

Viruses and their multisystem impact: testing, tracking and therapy

Armin Schwarzbach MD, PhD

Medical Doctor and Specialist for Laboratory Medicine

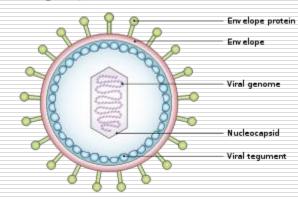
and

Gilian Crowther (MA Oxon), Dip ND/NT, mANP

AONM Director of Research

Agenda

- Herpes viruses, enteroviruses, and other species
- Associations of viruses with different health conditions:
 - Syndromes (ME/Fibromyalgia, etc.)
 - Autoimmune pathologies
 - Neurological conditions
 - Cancers
- SARS-CoV-2/COVID-19 and viral reactivation
- Testing techniques
- Checklists and other resources
- Therapies


We will focus on four different viral groupings

- Herpes viruses: Double-stranded DNA viruses
- Enteroviruses: Single-stranded RNA viruses
- Parvoviridiae: Single-stranded DNA genome
- Coronavirus SARS-CoV-2: Enveloped single-stranded RNA virus

Herpes viruses

The Herpes viruses are a large family of DNA viruses that cause infections and certain diseases in animals, including humans. Herpes viruses can cause both lytic and latent infections.

- •8 key viruses in this family, all of which can be tested for:
- 1. Herpes simplex virus type 1 (HSV1, cold sores on lips, also fingers and hands)
- 2. Herpes simplex virus type 2 (HSV2, genital sores)
- 3. Varicella Zoster virus (also called herpes varicella/herpes zoster/shingles)
- 4. Epstein Barr virus (EBV)
- 5. Cytomegalovirus (CMV)
- 6. Human herpes virus 6 (HHV6)
- 7. Human herpes virus 7 (HHV7)
- 8. Human herpes virus 8 (HHV8, sometimes also called KSHV)

Simplified diagram of the structure of EBV

Herpes Virus 1 & 2: Herpes Simplex Virus 1 / 2 (HSV 1 / 2)

<u>Virus:</u> Herpes Simplex Virus (Human Herpes Virus HHV 1 / 2) (obligate intracellular), double-stranded DNA virus

Transmission: Saliva, sharing drinks, sexually transmitted

<u>Symptoms</u> (incubation time 2-20 days): Watery blisters on the skin or mucous membranes of the mouth, lips, genitals, anus, flu-like symptoms (fever, muscle aches, swollen lymph nodes, problems urinating, herpes keratitis (pain, light sensitivity, discharge))

<u>Complications</u>: Multiple Sclerosis (neurovirulent), loss of vision, encephalitis, latent infection; reactivation by organ transplantation or HIV: encephalitis, pneumonitis, bone marrow suppression

Herpes Virus 3: Varicella Zoster Virus (VZV)

<u>Virus:</u> Varicella Zoster Virus (Human Herpes Virus HHV 3) (obligate intracellular organism), double-stranded DNA virus

<u>Transmission</u>: airborne, touching shingles blisters

<u>Symptoms</u> (incubation time 10-21 days): "Chickenpox" in younger people, "Herpes Zoster" in adults: Watery blisters on the skin, fever, tiredness, loss of appetite, headache

Complications: Encephalitis, pneumonia, bronchitis, 10-20% reactivation from nerve ganglia (Herpes Zoster), postherpatic neuralgia, Mollaret's meningitis, Zoster multiplex, "Ramsay Hunt syndrome" (painful blisters on tongue/ear, facial weakness, hearing loss), inflammation of arteries (new study Journal of the American College of Cardiology, Vol. 70, Issue 2, July 2017, "Herpes Zoster increases risk of stroke and myocardial infarction" 23,233 patients had a higher risk of apoplectic stroke (35%) and myocardial infarction (59%) after Herpes Zoster)

Herpes Virus 4: Epstein Barr Virus (EBV)

- <u>Virus:</u> Epstein Barr Virus (obligate intracellular), double stranded DNA virus, "Mononucleosis"
- <u>Transmission:</u> "kissing disease", saliva, drinking from the same glass, toothbrush, blood, sex, blood-transfusion, organ transplantation
- <u>Symptoms</u> (incubation period several weeks): fatique, fever, flulike symptoms, nausea, loss of appetite, lymphadenitis (swollen lymph nodes in the neck), rash, sore throat, weakness, sore muscles
- <u>Complications</u>: enlarged spleen, swollen liver, association with Non-Hodgkin Lymphoma

Very neurotropic – is attracted to the Central Nervous System

Herpes Virus 5: Cytomegalovirus (CMV)

- <u>Virus:</u> Cytomegalovirus (obligate intracellular), double-stranded DNA virus
- <u>Transmission:</u> body fluids (urine, saliva, breast milk, sexual transmission), organ transplantation, blood transfusion
- <u>Symptoms</u> (incubation period several weeks): fatique, fever, flulike symptoms, lymphadenitis (swollen cervical lymph nodes), sore throat, splenomegaly
- <u>Complications</u>: congenital infection with hearing loss, vision loss, seizures, mental disabilities, lack of coordination; immune suppressed patients: hepatitis, colitis, retinitis, pneumonitis, esophagitis, polyradiculopathy, transverse myelitis, subacute encephalitis; arterial hypertension, artheroscleroris, aortic aneurysms; association with Non-Hodgkin Lymphoma

Also very neurotropic –attracted to the CNS

Herpes Virus 6: Human Herpes Virus 6 (HHV6), roseola/exanthem subitum

- <u>Virus:</u> Human Herpes Virus 6 (obligate intracellular), doublestranded DNA virus, one of the Herpes viruses
- <u>Transmission</u>: Saliva, latency in salivary glands, haematopoetic (blood-building) system
- <u>Symptoms</u>: Exanthema subitum (roseola infantum, sixth disease) with high temperature followed by a rash;
- Complications: Multiple Sclerosis (neurovirulent), cofactor in M.E./CFS, fibromyalgia, AIDS, optic neuritis, cancer, temporal lobe epilepsy, Hashimoto thyroiditis, liver dysfunction, liver failure; reactivation by organ transplantation: encephalitis, pneumonitis, bone marrow suppression

Herpes Virus 7: Human Herpes Virus 7 (HHV-7)

<u>Virus:</u> HHV-7 belongs to the group of β-herpesviridae (obligate intracellular), double-stranded DNA virus

<u>Transmission</u>: Birth canal, breast milk, saliva and allogeneic blood product or transplants.

<u>Symptoms</u>: HHV-7 infections may be asymptomatic or associated with fever or febrile seizures. May occur with or without rash (Exantema subitum), vomiting, diarrhea, low lymphocyte counts

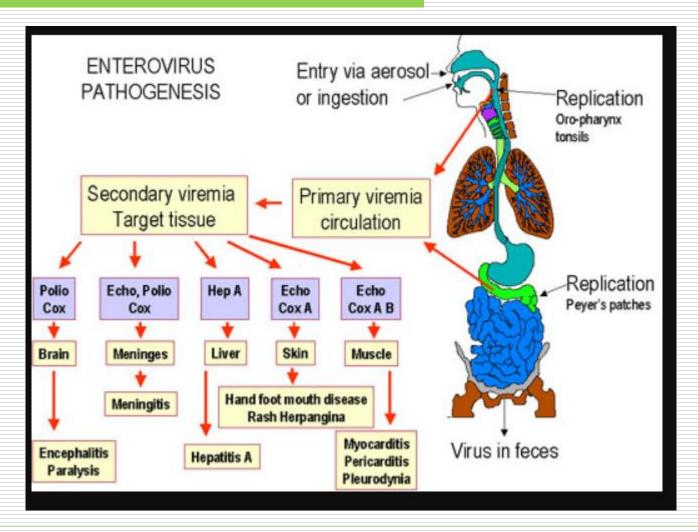
<u>Complications</u>: Neurological complications that occur alongside febrile diseases, e.g. infectious seizures and temporary hemiplegia, febrile epilepticus or clinical and laboratory signs of meningitis; seizures occur more frequently in reactivated infections

Source: Yoshikawa T, Ihira M, Suzuki K, Matsubara T, Furukawa S, Asano Y, Invasion by human herpesvirus 6 and human herpesvirus 7 of the central nervous system in patients with neurological signs and symptoms, Arch Dis Child 2000 Aug; 83(2): 170-1

Herpes Virus 8: Human Herpes Virus 8 (HHV-8; Kaposi's sarcoma herpes virus KSHV)

<u>Virus:</u> HHV-8 belongs to the group of herpesviridae, doublestranded DNA virus, one of the Herpes viruses

<u>Transmission:</u> Respiratory droplets and nasal secretions, shedding of viral particles into saliva, sexual transmission, intravenous drug use. Prevalences of between 30 and 80 % in Sub-Saharan Africa


<u>Symptoms:</u> Fever, maculopapular rash, lymphadenopathy, enlarged spleen

<u>Complications:</u> A blood disorder known as pancytopenia, bone marrow failure, rapid progression to Kaposi's sarcoma

Risk factors: Immune suppression, cancer

Source: Yoshikawa T, Ihira M, Suzuki K, Matsubara T, Furukawa S, Asano Y, Invasion by human herpesvirus 6 and human herpesvirus 7 of the central nervous system in patients with neurological signs and symptoms, Arch Dis Child 2000 Aug; 83(2): 170-1

Pathogenesis of enteroviruses

Diseases caused by enteroviruses

PATHOLOGY

	Table 4	Human diseases caused by enteroviruses			
	Poliovirus	Coxsackie A virus	Coxsackie B virus	Echovirus	Enterovirus (other)
Asymptomatic infection	yes	yes	yes	yes	yes
Meningitis	yes	yes	yes	yes	yes
Paralysis	yes	yes	yes	yes	?*
Febrile exanthems	no	yes	yes	yes	yes yes ?* yes
Acute respiratory disease	no	yes	yes	yes	yes
Myocarditis	no	yes	yes	yes	no
Orchitis	no	no	yes	yes	no

^{*} Enterovirus-D68 (EV-D68) can replicate in blood and may damage the central nervous system. It has been detected in cerebrospinal fluid of patients with acute flaccid paralysis.

There have been reports of children hospitalized with muscle weakness or paralysis, usually in their arms and legs. They were tested for poliovirus, West Nile virus, and enteroviruses. About half of the children had EV-D68 in their nose secretions; usually, EV-D68 affects the respiratory system and it is not yet known if this respiratory infection is linked to their muscle weakness.

Enterovirus:Coxsackie Virus A & B

- <u>Virus:</u> Coxsackie Virus (obligate intracellular), belongs to the Picornaviridae/enterovirus family (also includes Polio); it is a single-stranded RNA virus divided into group A and group B
- <u>Transmission</u>: Contagious, can easily spread from person to person: faecal-oral contamination, droplets of fluid from sneezes/coughs, body fluids, utensils, toys, diaper-changing table
- <u>Symptoms</u>: Gastrointestinal (from "entero"), intestinal permeability Group A: Herpangina, AHC (acute hemorrhagic conjunctivitis, HFM (hand-foot-and-mouth disease); Group B: Myocarditis, pericarditis, pleurodynia, hepatitis; Group A and B: fever, rashes, sore throat, diarrhoea, cough, fatigue, conjunctivitis, loss of appetite, headache, night sweats, aseptic meningitis
- <u>Complications</u>: CNS disease similar to poliomyelitis, systemic neonatal disease, insulin-dependent diabetes mellitus, Group A: generalized myositis with flaccid paralysis, Group B: focal muscle injury, degeneration of neuronal tissue with spastic paralysis

Enterovirus:

Coxsackie may cause Herpangina

Can cause
Herpangina: small
and symmetrical
ulcers of herpangina
on the soft palate
and retromolar pad,
also sometimes
simply called ulcers,
or aphthous ulcers

Source: https://www.uptodate.com/contents/image?imageKey=PEDS%2F127342

Enterovirus: Echovirus

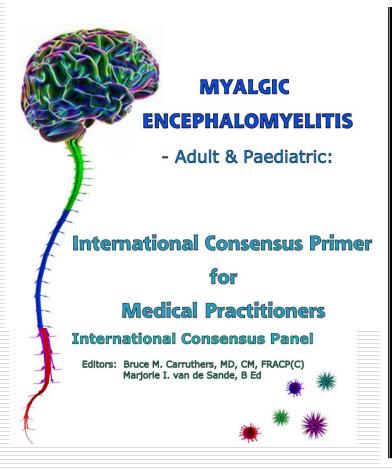
- Virus: Echovirus ("Enteric cytopathic human orphan virus"), belongs to the Picornaviridae family; single-stranded RNA virus
- <u>Transmission</u>: Contagious, can easily spread from person to person: faecal-oral contamination, respiratory droplets, body fluids, nosocomial route
- <u>Symptoms</u>: Gastrointestinal (from "entero"), intestinal permeability; depend on the site of infection: may involve breathing difficulties, harsh cough, mouth sores, sore throat, fever and chills, chest pain, severe headaches, photosensitivity, nausea and vomiting, eruptive skin rash
- Complications: Commonly associated with M.E./CFS: ""Finding enterovirus [viral capsid protein 1] protein in 82% of stomach biopsy samples seems to correlate with the high percentage of CFS patients with GI complaints"¹, if the infection affects the membranes covering the brain and spinal cord: meningitis, paralysis; chest pain if the infection affects the heart muscle or sac-like covering around the heart (pericarditis); acute flaccid paralysis/acute transverse myelitis, mental status changes
 Source: https://free3d.com/3d-model/echovirus-3050.html; https://medlineplus.gov/ency/article/001340.htm#:~:text=Mouth%20sores-

Parvoviridiae: Parvovirus B19

Virus: A very small non-enveloped DNA virus

<u>Transmission</u>: common and highly contagious, spreads through respiratory secretions, such as saliva, sputum, or nasal mucus, when an infected person coughs or sneezes. Parvovirus B19 can also spread through blood or blood products.

<u>Symptoms</u>: Sometimes called slapped-cheek disease because of the distinctive face rash that develops; lethargy; loss of appetite; abdominal pain and bloating; fever or low body temperature (hypothermia); vomiting; and severe, often bloody, diarrhea.


Complications: Can lead to serious health problems for the foetus (incl. miscarriage, stillbirth) in pregnant women. Painful or swollen joints (polyarthropathy syndrome), severe anaemia; persistent vomiting and diarrhea can cause rapid dehydration, and damage to the intestines and immune system can cause septic shock.

Agenda

- ☐ Herpes viruses, enteroviruses, and other species
- Associations of viruses with different health conditions
 - Syndromes (ME/Fibromyalgia, etc.)
 - Autoimmune pathologies
 - Neurological conditions
 - Cancers
- SARS-CoV-2/COVID-19 and viral reactivation
- Testing techniques
- Checklists and other resources
- Therapies

The ME International Consensus Primer recommends considering EBV, CMV, HHV-6 and enteroviruses

- Laboratory/Investigative Protocol: Diagnose by criteria. Confirm by laboratory and other investigations. A broad panel of tests provides a more robust basis to identify symptom patterns, abnormalities and orient treatment.

 Routine laboratory investigation:

 | CBC, | ESR, | CA, | P, | RBC Mg, | vitamin D3, | B12 & folate, | ferritin, | zinc, | FBS, | PC, | Hb A1C, | serum electrolytes, | TSH, | protein electrophoresis screen, | CRP, | creatinine, | ECG (U+ T wave notching), | CPK and liver function, | rheumatoid factor, | antinuclear antibodies, | urinalysis, | essential fatty acids, | CoEnzyme Q10, | immunoglobulins, | diurnal cortisol levels, | TTG, | serotonin

 Additional laboratory investigation: (as indicated by symptoms, history, clinical evaluation, lab findings, risk factors) | 24 hour urine free cortisol, | DHEA sulphate, | ACTH, | chest x-ray, | hormones including free testosterone | panoramic x-ray of dental roots, | amino acid profile, | abdominal ultra sound, | lactose/fructose breath test

 Further testing with specificity to ME, if and as indicated. Some tests are in the research stage but can identify abnormalities and focus treatment. Viral tests should be interpreted by a physician experienced in these infections.

abnormalities and focus treatment. Viral tests snould be interpreted by a physician experienced in these injections.					
Pathogen	Tests	Pathogen	Tests		
□ Enterovirus	RT-PCR, serology, stomach biopsy	□ mycoplasma	DNA-PCR, serology		
□ EBV, □ CMV, □ HHV-6	DNA-PCR, serology, antigenemia	□ Borrelia burgdorferi	DNA-PCR, serology, Western Blot		
□ Clamydia pneumonia	DNA PCR, serology	□ Parvovirus B19	DNA-PCR, IgG, IgM,		

Immune system profiles: □ *↓NK cell function & ↑ cytotoxicity; □ B & T-cell function: □ IgG, □ IgG subclasses 1-4; □ IgA, □ IgM (shift from T1 to T2), □ cytokine/chemokine profile panel (94% accuracy): IL-8, IL-13, MIP-1β, MCP-1, IL4, □ flow cytometry for ↑ lymphocyte activity, □ ↑ 37 kDa 2-5A RNase L immunoassay − defect/ratio & bioactivity, □ food sensitivity panel, □ chemical sensitivities, □ stool for WCB - D-lactic acid bacteria balance, ova & parasites, □ autoimmune profile, Intestinal dysbiosis: □ IgA & IgM for intestinal aerobic bacteria in serum, □↑ leukocyte elastase activity in PBMCs, □ IgG food intolerance test, □ toxoplasmosis

Neurological & static testing: □ *SPECT scan with contrast - ↓ cortical/cerebellar region cerebral blood flow (rCBF) in the frontal, parietal, temporal and occipital & brain stem regions - more brain involvement indicates increased illness severity, □ MRI of brain - (increased T2-weighted images in high white matter tracts & loss of GM volume) & rule out MS, □ MRI of spine (dynamic disc bulges/herniation , stenosis), □ sleep study (↓ stage 4 sleep, sleep pattern & rule out treatable sleep dysfunctions - upper airway resistance syndrome, sleep apnea, etc.)

PENE: A 2 consecutive day comprehensive 8-12 minute cardiopulmonary exercise stress test (measuring heart, lung, and metabolic function) - only ME patients have significantly worse scores the second day & abnormal recovery from exertion.

* Exercise tolerance test with expired gas exchange - (2 consecutive days) - measure cardiovascular, pulmonary &

Dr. Byron Hyde sees Enteroviruses as the key driver

of M.E.

Understanding Myalgic **Encephalomyelitis** These are the brain injuries in a typical severe M.E. patient, which include the enteroviral-injured memory and motor cortex, as demonstrated by Segami Oasis SPECT brain map Byron Hyde MD

Understanding Myalgic Encephalomyelitis, The New Pollo & The Chronic Fatigue Syndromes

Item 2: The Basic Characteristics of M.E.

M.E. is the chronic stage of an encephalitic enteroviral infection of the central nervous system (CNS) similar, but less lethal than, that caused by polio enteroviruses 1, 2 and 3.

- Myalgic Encephalomyelitis is a chronic, and only, enteroviral caused disease. The M.E. encephalitic features are less initially apparent, than in polio.
- An incubation period of two to six days occurs before the first symptoms of illness appear.
- 3. In adults, as with polio, the illness may begin with the appearance of biphasic symptoms. The first phase may be missed in sporadic cases. In both illnesses the initial biphasic symptoms may be "cold like" or gastric but often these are so slight they may be missed.
- 4. The second phase of M.E. illness is the encephalitic, meningitic-like associated with muscular symptom phase followed weeks or months later by the cascading features (discussed later).
- In northern latitudes M.E. occurs primarily from June to early November, peaking in late summer.
- HMPAO brain SPECT scan demonstrates a permanent micro-vascular injury to the CNS from the first few days of acute illness.
- 7. Brain injury as seen on SPECT brain scans clearly with Segami Oasis software. Injury in M.E. always involves the anterior left temporal lobe and left posterior cingulate gyrus and frequently the left motor cortex. These hypo-perfusion CNS injuries are consistent with, and explains, the memory and muscle disfunction in M.E. patients.

Videos and PPTs on the topic by Dr. Byron Hyde:

https://aonm.org/2019-improving-patients-lives/

Fibromyalgia and Epstein Barr Virus/CMV

Journal of Neurology and Neuroscience

Home Articles → Authors → Editors In Detail → Information → Citations Contact Us Special Issue RSS

Evaluation of Antiviral Antibodies against Epstein-Barr Virus and Neurotransmitters in Patients with Fibromyalgia

Reshkova V1*, Kalinova D1 and Milanov I2

¹Rheumatology Clinic, St. Ivan Rilski Multiprofile University Hospital for Active Treatment, Sofia, Bulgaria

²St. Naum Multiprofile Hospital for Active Treatment in Neurology and Psychiatry? St. Naum, Sofia, Bulgaria

*Corresponding Author: Dr. Valentina Reshkova

Clinic of Rheumatology St. Ivan Rilski Multiprofile

University Hospital for Active Treatment

13 Urvich Str. 1612 Sofia, Bulgaria

Tel: +359878622443 **E-mail:** v_reshkova@abv.bg

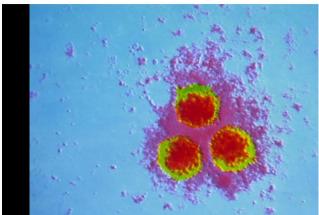
Citation: Reshkova V, Kalinova D, Milanov I. Evaluation of Antiviral Antibodies against Epstein-Barr Virus and Neurotransmitte Patients with Fibromyalgia. J Neurol Neurosci. 2016, 6:3. doi: 10.21767/2171-6625.100035

Received Date: August 25, 2015; Accepted Date: November 10, 2015; Published Date: November 14, 2015

Visit for more related articles at Journal of Neurology and Neuroscience

Abstract

Fibromyalgia (FM) is characterized by chronic widespread pain lasting for a minimum of three months, and pain at mechanical pressure in at least 11 of the 18 tender points. The cause of fibromyalgia is unknown. Several hypotheses have been developed including "central sensitization". This theory proposes that fibromyalgia patients have a lower threshold for pain because of increased reactivity of painsensitive neurons in the spinal cord or brain. Some researchers supposed that different


"The obtained results revealed that high EBV IgG concentrations in the serum of patients with FM correlated with pain intensity and associated clinical symptoms. This is consistent with the fact that FM is connected to the immune response to certain infectious agents (e.g. EBV, CMV)."

PMCID: PMC3076592

NIHMSID: NIHMS259279

Fibromyalgia and Varicella Zoster Virus (VZV)

Varicella-zoster virus

Varicella Zoster Virus (VZV) - a highly contagious virus that spreads from person-to-person by coughing or sneezing, or through direct contact with the characteristic skin lesions it causes or fluids from blisters on an infected person.

Curr Top Microbiol Immunol. Author manuscript; available in PMC 2011 Apr 14.

Published in final edited form as:

Curr Top Microbiol Immunol. 2010; 342: 243-253.

doi: 10.1007/82 2009 3

Neurological Disease Produced by Varicella Zoster Virus Reactivation Without Rash

Don Gilden, Randall J. Cohrs, Ravi Mahalingam, and Maria A. Nagel

Author information ► Copyright and License information ►

The publisher's final edited version of this article is available at <u>Curr Top Microbiol Immunol</u> See other articles in PMC that <u>cite</u> the published article.

Abstract

Go to: ☑

Reactivation of varicella zoster virus (VZV) from latently infected human ganglia usually produces herpes zoster (shingles), characterized by dermatomal distribution pain and rash. Zoster is often followed by chronic pain (postherpetic neuralgia or PHN) as well as meningitis or meningoencephalitis, cerebellitts, isolated cranial nerve palsies that produce ophthalmoplegia or the Ramsay Hunt syndrome, multiple cranial nerve palsies (polyneuritis cranialis), vasculopathy, myelopathy, and various inflammatory disorders of the eye. Importantly, VZV reactivation can produce chronic radicular pain without rash (zoster sine herpete), as well as all the neurological disorders listed above without rash. The protean neurological and ocular disorders produced by VZV in the absence of resh serve abellance to the practicing clinician. The

"Zoster is often followed by chronic pain (postherpetic neuralgia)"

Source: https://www.clinicaladvisor.com/varicella-zoster-virus/slideshow/377/

M.E.

Fibromyalgia

Association of Parovirus B19 with ME/CFS as well as fibromyalgia

PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 73 (2019), No. 5 (722), pp. 411–418.

Rīga Stradiņš university

Study Here About Us Continuing Education

DOI: 10.2478/prolas-2019-0065

ASSOCIATION OF HUMAN PARVOVIRUS B19 INFECTION WITH DEVELOPMENT AND CLINICAL COURSE OF MYALGIC ENCEPHALOMYELITIS / CHRONIC FATIGUE SYNDROME

Santa Rasa-Dzelzkalēja^{1,#}, Svetlana Čapenko¹, Angelika Krūmiņa², Yung-Cheng Lin³, and Modra Murovska¹

- ¹ Institute of Microbiology and Virology, Riga Stradiņš University, 5 Rātsupītes Str., LV-1067, Rīga, LATVIA
- ² Department of Infectology and Dermatology, Rīga Stradiņš University, 3 Linezera Str., LV-1006, Rīga, LATVIA
- ³ Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, TAIWAN
- # Corresponding author, santa.rasa-dzelzkaleja@rsu.lv

Contributed by Modra Murovska

Our aim was to estimate the presence of B19V infection markers, the level of cytokines and time period since the appearance of infection in association with ME/CFS clinical symptoms. In 200 ME/CFS patients and 104 control group individuals the presence of B19V-specific IgG/gMR class antibodies, B19V NS1 gene sequence, mRNA expression, viral load and level of cytokines were determined. B19V-specific IgG-antibodies were found in 70% of ME/CFS patients and 67.4% of controls, IgM-antibodies in 8% of patients and in none of controls, B19V genomic sequences in 29% of patients and 3.8% of controls. 58.6% of positive patients had active and 41.4% had latent/persistent B19V infection. B19V NS1 gene expression was detected in 43% of patients. B19V load varied from < 0.2 copies to median 38.2 copies/µg of DNA. According to the antibody pattern, 36% of patients had a recent, and 43% had sustained B19V infection. Patients with the B19V genomic sequence and NS1 specific antibodies significantly more often had lymphadenopathy and multi-joint pain. Onset of the symptoms corresponded to time of appearance of B19V infection. IL-10 and TNF- levels were higher in patients with elevated B19V load. B19V genome 1 was identified in Latvian ME/CFS patients. The results indicated that at least in some cases

scientific papers

Human Parvovirus B19 Infection Status in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia

Santa Rasa-Dzelzkalēja, RSU Augusts Kirchensteins Institute of Microbiology and Virology, Latvia Svetlana Čapenko, RSU Augusts Kirchensteins Institute of Microbiology and Virology, Latvia Agnese Vanaga, RSU Augusts Kirchensteins Institute of Microbiology and Virology, Latvia Marija Mihailova, Pauls Stradiņš Clinical University Hospital, Latvia, RSU Department of Neurology and Neurosurgery, Latvia Angelika Krūmiņa, RSU Department of Infectology and Dermatology, Latvia Modra Murovska, RSU Augusts Kirchensteins Institute of Microbiology and Virology, Latvia

Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are chronic diseases with unclear aetiology. Human parvovirus B19 (B19) is immunomodulatory single-stranded DNA virus, which belongs to *Parvoviridae* family, *Parvovirinae* subfamily and *Erythrovirus* genus. B19 is considered as a possible pathogen or trigger factor in development of ME/CFS and FM.

Source: https://www.sciendo.com/article/10.2478/prolas-2019-0065;

https://www.rsu.lv/en/scientific-papers/human-parvovirus-b19-infection-status-patients-myalgic-encephalomyelitischronic

Herpes viruses are often involved in neurological disease

Virus Adaptation and Treatment

Dovepress

ORIGINAL RESEARCH

A paradigm linking herpesvirus immediate-early gene expression apoptosis and myalgic encephalomyelitis chronic fatigue syndrome

This article was published in the following Dove Press journal: Virus Adaptation and Treatment 21 February 2011 Number of times this article has been viewed

A Martin Lerner¹ Safedin Begaj²

Department of Medicine, William Beaumont Hospital, Royal Oak, MI, USA; DCL Medical Laboratories, Indianapolis, IN, USA Abstract: There is no accepted science to relate herpesviruses (Epstein–Barr virus [EBV], human cytomegalovirus [HCMV], and human herpesvirus 6 [HHV6]) as causes of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). ME/CFS patients have elevated serum immunoglobulin (Ig)G serum antibody titers to EBV, HCMV, and HHV6, but there is no herpesvirus DNA-emia, herpesvirus antigenemia, or uniformly elevated IgM serum antibody titers to the complete virions. We propose that herpesvirus EBV, HCMV, and HHV6 immediate-early gene expression in ME/CFS patients leads to host cell dysregulation and host cell apoptosis without lytic herpesvirus replication. Specific antiviral nucleosides, which alleviate ME/CFS, namely valacyclovir for EBV ME/CFS and valganciclovir for HCMV/HHV6 ME/CFS, inhibit herpesvirus DNA polymerases and/or thymidine kinase functions, thus inhibiting lytic virus replication. New host cell recruitment thus ceases. In the absence of new herpesvirus, nonpermissive herpesvirus replication stops, and ME/CFS recovery ensues.

Keywords: ME/CFS, Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), HHV6
abortive replication

The gamma herpesvirus Epstein–Barr virus (EBV) and both beta herp cytomegalovirus (HCMV) and human herpesvirus 6 (HHV6) have bit of replication and latency during which these large virus genomes

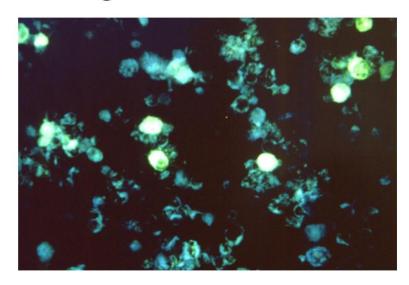
"We propose that herpesvirus EBV, HCMV, and HHV6 immediate-early gene expression in ME/CFS patients leads to host cell dysregulation and host cell apoptosis without lytic herpesvirus replication. Specific antiviral nucleosides, which alleviate ME/CFS, namely valacyclovir for EBV ME/CFS and valganciclovir for HCMV/ HHV6 ME/CFS, inhibit herpesvirus DNA polymerases and/or thymidine kinase functions, thus inhibiting lytic virus replication. New host cell recruitment thus ceases. In the absence of new herpesvirus, nonpermissive herpesvirus replication stops, and ME/CFS recovery ensues."

Infecting the brain via the Olfactory Nerve, Limbic Encephalitis

HHV-6 can travel to the brain through the nose, and is also the dominant variant found in the sensory ganglia (<u>Hufner 2007</u>). Like HHV-6, measles and HSV-1 tend to affect the limbic system as well as the hippocampus (<u>Harberts 2011</u>). There have been a number of abnormalities found in CFS patients in the hippocampus: reduced concentration of N-acetylaspartate, (<u>Brooks 2000</u>), hippocampal atrophy and 5-HT1A receptor binding in the hippocampus (Cleare 2005).¹

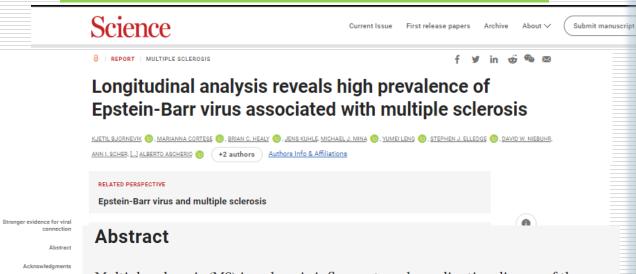
Source: 1. https://hhv-6foundation.org/associated-conditions/hhv-6-and-chronic-fatigue-syndrome

Published on 13th January 2022 in "Science": EBV


Cells infected with Epstein-Barr, a common herpes virus that can cause mononucleosis and establishes a latent, lifelong infection of the host.

CDC

"The hypothesis that EBV causes MS has been investigated by our group and others for several years, but this is the first study providing compelling evidence of causality," said Alberto Ascherio, professor of epidemiology and nutrition at Harvard Chan School and senior author of the study. "This is a big step because it suggests that most MS cases could be prevented by stopping EBV infection, and that targeting EBV could lead to the discovery of a cure for MS."


HEALTH & MEDICINE

Epstein-Barr virus may be leading cause of MS

First study to provide 'compelling evidence of causality'

The study found that the risk of developing MS increased 32-fold following EBV infection

Supplementary Materials

References and Notes

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system of unknown etiology. We tested the hypothesis that MS is caused by Epstein-Barr virus (EBV) in a cohort comprising more than 10 million young adults on active duty in the US military, 955 of whom were diagnosed with MS during their period of service. Risk of MS increased 32-fold after infection with EBV but was not increased after infection with other viruses, including the similarly transmitted cytomegalovirus. Serum levels of neurofilament light chain, a biomarker of neuroaxonal degeneration, increased only after EBV seroconversion. These findings cannot be explained by any known risk factor for MS and suggest EBV as the leading cause of MS.

"Using data from more than ten million United States military recruits monitored over a 20-year period, 955 of whom were diagnosed with MS during their service, Kjetil Bjornevik et al. tested the hypothesis that MS is caused by EBV. They found that the risk of developing MS in individuals who were FBVnegative increased by 32-fold following EBV infection. "These findings," say the authors, "cannot be explained by any known risk factor and suggest EBV as the leading cause of MS."

Source: https://www.science.org/doi/10.1126/science.abj8222; https://www.eurekalert.org/news-releases/939665

Journal of Alzheimer's Disease: HSV1/herpes encephalitis specifically identified

<u>J Alzheimers Dis</u>. Author manuscript; available in PMC 2017 Jun 4. Published in final edited form as:

PMCID: P NIHMSID: NI

<u>J Alzheimers Dis. 2016; 51(4): 979–984.</u> doi: 10.3233/JAD-160152

Microbes and Alzheimer's Disease

Ruth F. Itzhaki, a,* Richard Lathe, b,* Brian J. Balin, c Melvyn J. Ball, d Elaine L. Bearer, e Heiko Braak, Maria J. Chris Carter, Mario Clerici, S. Louise Cosby, Kelly Del Tredici, Hugh Field, Tamas Fulop, Claudio Grassi, Griffin, Murio J. Jurgen Haas, Alan P. Hudson, Angela R. Kamer, Douglas B. Kell, Federico Licastro, Luc Letent Lövheim, Roberta Mancuso, Judith Miklossy, Carola Otth, Anna Teresa Palamara, George Perry, Chris Preston, Etheresia Pretorius, Judith Miklossy, Naji Tabet, Simon D. Taylor-Robinson, And Judith A. Hudsonee

Author information ► Copyright and License information ►

The publisher's final edited version of this article is available at <u>J Alzheimers Dis</u> See other articles in PMC that cite the published article.

We are researchers and clinicians working on Alzheimer's disease (AD) or related topics, and we write express our concern that one particular aspect of the disease has been neglected, even though treatment based on it might slow or arrest AD progression. We refer to the many studies, mainly on humans, implicating specific microbes in the elderly brain, notably herpes simplex virus type 1 (HSV1), *Chlam pneumoniae*, and several types of spirochaete, in the etiology of AD [1-4]. Fungal infection of AD bra 6] has also been described, as well as abnormal microbiota in AD patient blood [7]. The first observation of HSV1 in AD brain were reported almost three decades ago [8]. The ever-increasing number of these studies (now about 100 on HSV1 alone) warrants re-evaluation of the infection and AD concept.

AD is associated with neuronal loss and progressive synaptic dysfunction, accompanied by the deposition

"There is incontrovertible evidence that Alzheimer's Disease has a dormant microbial component. We can't keep ignoring all of the evidence"

Professor Douglas Kell, Manchester University

"We refer to the many studies, mainly on humans, implicating specific microbes in the elderly brain, **notably herpes simplex virus type 1 (HSV1)**, *Chlamydia pneumoniae*, and several types of spirochaete, in the etiology of AD [1-4]."

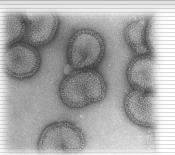
Viral involvement in autoimmunity is well documented ...

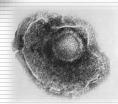
- Viruses: molecular mimicry, bystander activation or viral persistence? – possibly a perfect storm of all three
- **Examples:**
 - ► SLE (Lupus)
 - ► Type 1 Diabetes
 - Ulcerative colitis
 - Sarcoidosis
 - ▶ Myasthenia Gravis
 - ▶ Graves' Disease

... in autoimmune neuropsychiatric syndromes (PANS/PANDAS), too

Autoimmune neuropsychiatric disorders

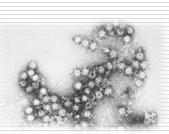
- **Group A streptococci**
- Influenza A
- Varicella Zoster (VZV)
- **Mycoplasma**
- Lyme disease
- **Babesia**
- **Bartonella**
- Coxsackie virus

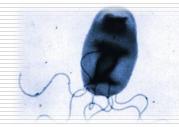

Patients often have more than one infection, and can be subclinical



A controversial disease revives the debate about the immune system and mental illness.

BY ANDREW CURRY ILLUSTRATION BY HADLEY HOODER APRIL 16, 2015





Full presentation on viruses in autoimmunity on the AONM website

https://aonm.org/viruses-and-testing/

Lyme Disease and Viruses: Their Role in Degenerative & Autoimmune Conditions

Armin Schwarzbach MD PhD

Specialist for laboratory medicine

ArminLabs

Laboratory for tick-borne diseases Tel. 0049 821 2182879 info@arminlabs.com

What cancers are viruses associated with?

- ▶ Myelodysplastic syndromes
- ▶ Leukaemia
- Lymphomas/Non-Hodgkin's Lymphoma

B-Cell Non-Hodgkin's Lymphoma: EBV/CMV

- Epstein Barr Virus-associated Non-Hodgkin's lymphoma of B-cell origin, Hodgkin's disease, acute leukemia, and systemic lupus erythematosus: a serologic and molecular analysis, Mitarnun W et al, http://www.ncbi.nlm.nih.gov/pubmed/12188384
- EBV-Associated Lymphoproliferative Disorders: Classification and Treatment, Carbone A et al, The oncologist 1083-7159/2008
- Cytomegalovirus infection in patients with lymphoma: an important cause of morbidity and mortality.
 Torres HA et al. Clin. Lymphoma Myeloma, 2006 Mar;6(5): 393-8

Source: http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/pulmonary/sarcoidosis/

"How EBV causes blood cancer", study, University of Sussex - report November 2016

Scientists reveal how a common virus triggers blood cancer

Scientists at the University of Sussex, trying to uncover how the common Epstein-Barr virus causes blood cancer in adults and children, have discovered how the virus takes control of two genes involved in cancer development so it can switch them on or off.

The research team, led by <u>Professor Michelle West</u>, set out to determine how the Epstein-Barr virus controls two genes; *MYC*, a gene known to drive cancer development when it is altered or switched on at high level and *BCL2L11*, a gene which normally triggers cell death to prevent cancer, but can be turned off by the virus.

With thanks to funding from the blood cancer charity <u>Bloodwise</u>, the scientists discovered that the virus controls the *MYC* and *BCL2L11* genes by hijacking 'enhancer' DNA regions which are situated far away from the genes. These enhancers act as 'control centres' and are able to contact and control genes from long distances by the looping out of the intervening stretches of DNA.

Professor West's team found that Epstein-Barr virus turns on the *MYC* gene by increasing contacts between a specific set of enhancers and the gene. The scientists believe this may explain how the virus causes the changes to the *MYC* gene that are found in Burkitt's lymphoma.

Professor Michelle West

The team also discovered new enhancers which control the *BCL2L11* gene. In this case, they found that Epstein-Barr virus stops these control centres from contacting the gene. Encouragingly the team have discovered that this blocking effect can be reversed by using a specific drug - paving the way for new treatments.

Professor West said: "This is a key step towards uncovering how this common virus which, affects thousands of people every year, causes blood cancer.

"It is now important to carry out further studies to cabout how the virus drives lymphoma developmen

Dr Alasdair Rankin, Research Director at Bloodwis were never sure of the exact mechanisms. These genes that control cancer growth.

Professor West said: "This is a key step towards uncovering how this common virus which, affects thousands of people every year, causes blood cancer."

tell us more ugs."

a, but we behaviour of

"By mapping out the complex genetic interactions that help lymphoma cells grow and survive, this research can guide the design of new treatments to target the disease. It may also help to identify those drugs currently used to treat other diseases that could be effective in treating these types of lymphoma."

... as well as tailored testing panels (on request)

» Lymphoma/leukaemia/myeloma:

- 1. Borrelia ELISpot
- 2. Babesia ELISpot
- 3. Ehrlichia/Anaplasma ELISpot
- 4. Coxiella IgG/IgM antibodies
- 5. EBV ELISpot
- 6. CMV ELISpot
- 7. VZV ELISpot
- 8. CD3/CD56/CD57 cells

Monoclonal gammopathy:

- 1. Bartonella ELISpot
- 2. CD3/CD56/CD57 cells

Glioblastoma/brain cancer:

- 1. Borrelia-ELISpot
- 2. Mycolasma pneumoniae ELISpot + IgG/IgA antibodies
- 3. Toxoplasma IgG/IgM antibodies
- 4. CD3/CD56/CD57 cells

Prostate cancer:

- Chlamydia pneumoniae ELISpot + IgG/IgA antibodies
- 2. Chlamydia trachomatis ELISpot + IgG/IgA antibodies
- 3. HSV1/2 ELISpot + IgG/IgA/IgM antibodies
- 4. CD3/CD56/CD57 cells

Lung cancer:

- Chlamydia pneumoniae ELISpot + IgG/IgA antibodies
- Mycoplasma pneumoniae ELISpot + IqG/IqA antibodies
- 3. CD3/CD56/CD57 cells

Angiogenic tumors:

- 1. Bartonella ELISpot
- 2. CD3/CD56/CD57 cells

Oesophageal cancer:

- 1. Mycoplasma pneumoniae ELISpot
 - + IgG/IgA antibodies
- 2. CD3/CD56/CD57 cells

Breast cancer:

- 1. Bartonella Elisot
- Mycoplasma pneumoniae ELISpot + IqG/IqA antibodies
- 3. CD3/CD56/CD57 cells

Cervical cancer:

- Chlamydia trachomatis ELISpot + IgG/IgA antibodies
- 2. HSV1/2 ELISpot + IgG/IgA/IgM antibodies
- 3. CD3/CD56/CD57 cells

Agenda

- ☐ Herpes viruses, enteroviruses, and other species
- Associations of viruses with different health conditions:
 - Syndromes (ME/Fibromyalgia, etc.)
 - Autoimmune pathologies
 - Neurological conditions
 - Cancers
- SARS-CoV-2/COVID-19 and viral reactivation
- Testing techniques
- Checklists and other resources
- Therapies

"Epstein-Barr virus (EBV) reactivation resulting from the inflammatory response to coronavirus infection may be the cause of previously unexplained long COVID"

Articl

Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation

Jeffrey E. Gold 1,*, Ramazan A. Okyay 2, Warren E. Licht 3 and David J. Hurley 4

- World Organization, Watkinsville, GA 30677, USA
- ² Department of Public Health, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46040, Turkey; razim01@gmail.com
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; warren.licht@brownphysicians.org
- College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; djhurley@uga.edu
- Correspondence: jeff_gold@world.org

Abstract: Coronavirus disease 2019 (COVID-19) patients sometimes experience long-term symptoms following resolution of acute disease, including fatigue, brain fog, and rashes. Collectively these have become known as long COVID. Our aim was to first determine long COVID prevalence in 85 randomly surveyed COVID-19 patients and, subsequently, to determine if there was an association between occurrence of long COVID symptoms and reactivation of Epstein–Barr virus (EBV) in 68 COVID-19 patients recruited from those surveyed. We found the prevalence of long COVID symptoms to be 30.3% (56/185), which included 4 initially asymptomatic COVID-19 patients who later developed long COVID symptoms. Next, we found that 66.7% (20/30) of long COVID subjects versus 10% (2/20) of control subjects in our primary study group were positive for EBV reactive for EBV re

secondary group of 1 may occur soon afte long COVID sympto COVID-19 inflamma

OF LONG COVID SUBJECTS WERE POSITIVE FOR EBV REACTIVATION BASED ON POSITIVE EBV EARLY ANTIGENDIFFUSE IGG, OR EBV VIRAL CAPSID ANTIGEN IGM TITRES.

Lead study author Jeffrey E Gold said: "We ran EBV antibody tests on recovered COVID-19 patients, comparing EBV reactivation rates of those with long COVID symptoms to those without long COVID symptoms. The majority of those with long COVID symptoms were positive for EBV reactivation, yet only 10% of controls indicated reactivation.

... In a subset of 68 COVID-19 patients randomly selected from those surveyed, 66.7% of long COVID subjects versus 10% of controls were positive for EBV reactivation based on positive EBV early antigen-diffuse IgG, or EBV viral capsid antigen IgM titres."

Citation: Gold, LE

Citation: Gold, J.E.; Okyay, R.A.; Licht, W.E.; Hurley, D.J. Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. Pathogens 2021, 10, 763. https://doi.org/10.3390/

Source: https://thebiomedicalscientist.net/news/long-covid-linked-epstein-barr-virus, https://www.mdpi.com/2076-0817/10/6/763

It also works the other way round: EBV increases susceptibility to infection by SARS-CoV-2

VIRUS-CELL INTERACTIONS

Epstein-Barr Virus Lytic Replication Induces ACE2 Expression and Enhances SARS-CoV-2 Pseudotyped Virus Entry in Epithelial Cells

Dinesh Verma, Trenton Mel Church, Sankar Swaminathan Shankar Swaminathan

*Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
*Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA

ABSTRACT Understanding factors that affect the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is central to combatting coronavirus disease 2019 (COVID-19). The virus surface spike protein of SARS-CoV-2 mediates viral entry into cells by binding to the ACE2 receptor on epithelial cells and promoting fusion. We found that Epstein-Barr virus (EBV) induces ACE2 expression when it enters the lytic replicative cycle in epithelial cells. By using vesicular stomatitis virus (VSV) particles pseudotyped with the SARS-CoV-2 spike protein, we showed that lytic EBV replication enhances ACE2-dependent SARS-CoV-2 pseudovirus entry. We found that the ACE2 promoter contains response elements for Zta, an EBV transcriptional activator that is essential for EBV entry into the lytic cycle of replication. Zta preferentially acts on methylated promoters, allowing it to reactivate epigenetically silenced EBV promoters from latency. By using promoter assays, we showed that Zta directly activates methylated ACE2 promoters. Infection of normal oral keratinocytes with EBV leads to lytic replication in some of the infected cells, induces ACE2 expression, and enhances SARS-CoV-2 pseudovirus entry. These data suggest that subclinical EBV replication and lytic gene expression in epithelial cells, which is ubiquitous in the human population, may enhance the efficiency and extent of SARS-CoV-2 infection of epithelial cells by transcriptionally activating ACE2 and increasing its cell surface expression.

IMPORTANCE SARS-CoV-2, the coronavirus responsible for COVID-19, has caused a pandemic leading to millions of infections and deaths worldwide. Identifying the factors governing susceptibility to SARS-CoV-2 is important in order to develop strategies to prevent SARS-CoV-2 infection. We show that Epstein-Barr virus, which infects

"Epstein-Barr virus, which infects and persists in 90% of adult humans, increases susceptibility of epithelial cells to infection by SARS-CoV-2. EBV, when it reactivates from latency or infects epithelial cells, increases expression of ACE2, the cellular receptor for SARS-CoV-2, enhancing infection by SARS-CoV-2. Inhibiting EBV replication with antivirals may therefore decrease susceptibility to SARS-CoV-2 infection.

COVID-19 can potentially cause reactivation of VZV

CASE

COVID-19 Associated With Concomitant Varicella Zoster Viral Encephalitis

Pavan Patel, DO, Anishee Undavia, MD, Rabia Choudry, MD, Yan Zhang, MD, and Aparna M. Prabhu, MD, MRCP

Neurology: Clinical Practice April 2021 vol. 11 no. 2 e219-e221 doi:10.1212/CPJ.00000000000000902

Coronavirus disease 2019 (COVID-19) is a novel infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Patients can be asymptomatic or symptomatic with severity determined by age and comorbid conditions. Common early symptoms are fever, cough, dyspnea, myalgia, headache, and diarrhea. In addition to respiratory complications, other systems involved include genitourinary, gastrointestinal, and cardiac.1

Neurologic complications such as encephalopathy were initially presumed to be because of multisystem involvement. Retrospective studies of patients with COVID-19 demonstrated multiple neurologic complications affecting central and peripheral nervous systems including dizziness, headache, hypogeusia, hyposmia, ischemic/hemorrhage stroke, and Guillain-Barre syndrome.2 There was a single case report of hemorrhagic necrotizing encephalopathy reported in COVID-19, with imaging features of enhancement of bilateral thalami and medial temporal lobes.3 To our knowledge, there have been no cases reported of coinfection with another virus during active COVID-19 infection resulting in neurologic manifestations.

COVID-19 can potentially cause reactivation of VZV and subsequently have an additive effect in neurologic complications

Correspondence

Dr. Patel Patelpav@einstein.edu

PRACTICAL IMPLICATIONS

COVID-19 can potentially cause reactivation of VZV and subsequently have an additive effect in neurologic complications.

MORE ONLINE

COVID-19 Resources

For the latest articles, invited commentaries, and blogs from physicians around the world NPub.org/COVID19

Source: https://cp.neurology.org/content/neurclinpract/11/2/e219.full.pdf; https://www.rheumatologyadvisor.com/home/generalrheumatology/herpes-zoster-reactivation-covid19-vaccination-autoimmune-inflammatory-rheumatic/

Cytomegalovirus and Covid-19

COMMENTARY

Open Acce

Does reactivation of cytomegalovirus contribute to severe COVID-19 disease?

Cecilia Söderberg-Nauclér

"CMV reactivation and virus induced immune dysfunction may be under-estimated as a driver of immuno-pathogenesis in patients with severe COVID-19."

Abstract

The majority of people infected with SARS-CoV-2 are asymptomatic or have mild to moderate symptoms. However for unknown reasons, about 15 % have severe pneumonia requiring hospital care and oxygen support, and about 5 % develop acute respiratory distress syndrome, septic shock, and multiorgan failure that result in a high mortality rate. The risk of severe COVID-19 is highest among those who are over 70 years of age. Why severe COVID-19 develops in some people but not others is not understood. Could some cases involve reactivation of latent cytomegalovirus (CMV)?

"... diagnosing CMV in COVID-19 patients could be well worth the effort."

Key points

Latent human cytomegalovirus (CMV) is carried by 70–90 % of the adult population and is reactivated by inflammation. One third of patients in intensive care reactivate CMV, which doubles their mortality rate; how many COVID-19 patients reactivate latent CMV to complicate their diseases and enhance their mortality rate?

Who becomes severely ill in COVID-19 disease?

The virus causes asymptomatic, mild and severe infections. While many SARS-CoV-2 infected individuals are asymptomatic (estimated to account for 40–50% of transmissions) and a majority of infected individuals develop mild to moderate symptoms, about 15% have severe pneumonia requiring hospital care and oxygen support and about 5% develop acute respiratory distress

Source: <u>Söderberg-Nauclér</u>, C. Does reactivation of cytomegalovirus contribute to severe COVID-19 disease?. Immun Ageing **18**, 12 (2021). https://doi.org/10.1186/s12979-021-00218-z

Herpes Simplex Virus reactivation with COVID-19

Article

Herpes Simplex Virus Re-Activation in Patients with SARS-CoV-2 Pneumonia: A Prospective, Observational Study

Erica Franceschini ^{1,*10}, Alessandro Cozzi-Lepri ², Antonella Santoro ¹, Erica Bacca ³10, Guido Lancellotti ³, Marianna Menozzi ¹, William Gennari ⁴, Marianna Meschiari ¹10, Andrea Bedini ¹, Gabriella Orlando ¹, Cinzia Puzzolante ¹, Margherita Digaetano ¹, Jovana Milic ³, Mauro Codeluppi ⁵, Monica Pecorari ⁴, Federica Carli ¹, Gianluca Cuomo ¹, Gaetano Alfano ⁶, Luca Corradi ¹, Roberto Tonelli ⁷10, Nicola De Maria ⁸, Stefano Busani ⁹, Emanuela Biagioni ⁹, Irene Coloretti ⁹, Giovanni Guaraldi ³, Mario Sarti ⁴, Mario Luppi ¹⁰, Enrico Clini ⁷10, Massimo Girardis ⁹, Inge C. Gyssens ^{11,12} and Cristina Mussini ^{1,3,*}

Our study has some strengths: it is the first study that analyzed the incidence and clinical implications of HSV-1 re-activation in patients with SARS-CoV-2 pneumonia; second it has strong clinical and therapeutic implications for COVID-19 patients, especially in the present and future waves of hospitalized patients most of whom are treated with steroids, which is now considered the SOC.

In conclusion, our study shows a high incidence of both virological and clinical HSV-1 re-activation in patients with SARS-CoV-2 severe/critical pneumonia. Data show an association between this risk and treatment with steroids, which could not be explained by age, previous IMV, and level of inflammation at hospital admission. Further studies are needed, especially a randomized controlled trial, to confirm the utility of acyclovir prophylaxis in COVID-19 patients with severe pneumonia admitted to the hospital.

"Conclusions: our study shows a high incidence of HSV-1 re-activation both virologically and clinically in patients with SARS-CoV-2 severe pneumonia"

Outcome: Qualitative or Quantative detection of HSV-1

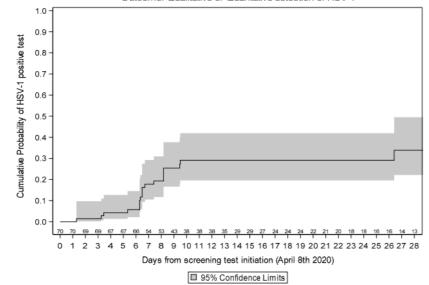


Figure 1. Kaplan-Meier estimates of HSV re-activation.

Cytomegalovirus (CMV) can reactivate with COVID too ...

CMV EliSpot

1 CMV Lytisch ! 22 SI

0-1 = negative

2-3 = weak positive

> 3 = positive

1 CMV Latent ! 2 SI

0-1 = negative

2-3 = weak positive

2-3 = weak positive

> 3 = positive

The result of the EliSpot test indicates current activity against Cytomegalo Virus (CMV).

Nov. 2021, before COVID diagnosis

April 2022, after COVID

... as well as Coxsackie and Echovirus

Coxsackie-Virus antibodies

Coxsackie-Virus-IgG Type A7 (IFT)	+	1:3200	Titer	< 1:100
Coxsackie-Virus-IgG Type B1 (IFT)	+	1:3200	Titer	< 1:100
Coxsackie-Virus-IgA Type A7 (IFT)	+	1:320	Titer	< 1:10
Coxsackie-Virus-IgA Type B1 (IFT)	+	1:320	Titer	< 1:10

Echo IgG-/IgA-antibodies

The specific positive ECHO-virus-IgG/IgA-antibodies indicate current humoral immune responses against ECHO-virus (recent infection with ECHO-virus?).

Agenda

- Herpes viruses, enteroviruses, and other species
- Associations of viruses with different health conditions:
 - Syndromes (ME/Fibromyalgia, etc.)
 - Autoimmune pathologies
 - Neurological conditions
 - Cancers
- SARS-CoV-2/COVID-19 and viral reactivation
- Testing techniques
- Checklists and other resources
- Therapies

Testing can be either via antibodies, EliSpots, or PCR

The Humoral System: Antibody testing.

Antibody testing, often called serology, tests the B cell response. This consists of IgG (Immunoglobulin G), IgM (Immunoglobulin M), and (wherever possible) IgA (Immunoglobulin A).

The Cellular System: T-Cell immunity.

A technique for testing the other arm of the immune system, i.e., cellular T-cell immunity, is called EliSpot (enzyme-linked immunospot assay). This is a lymphocyte transformation test using an Interferon Gamma Release Assay.

PCR testing is available for all viruses, but is not as highly recommended in most cases as the two techniques above

Highly sensitive antibody tests available for all viruses (and other pathogens)

- E.g. EBV Immunoarray with 9 markers including viral capsid antigen (VCA), early antigen (EA), Epstein-Barr Nuclear Antigen (EBNA)
- Antibody tests including IgA (shows active infection along the mucosal membranes) for many of the viruses

Example: Varicella Zoster Virus (VZV)

```
VZV IgG-/IgA-/IgM-Antikörper
                                  positiv
1 VZV-IqG
                                      4399,8 IE/1
    <80 IE/l negativ
    >80 - < 110 IE/1
                       grenzwertig
    >110 IE/l positiv
                                 positiv
1 VZV-IgA
                                       2,032 Ratio
                         = negativ
    Ratio < 0.8
    Ratio 0,8-1,1 = grenzwertig
    Ratio >= 1,1
                         = positiv
1 VZV-IqM
                                 negativ
                                       0.186 Ratio
    Ratio < 0,8
                         = negativ
    Ratio 0.8 - 1.1 = grenzwertig
                         = positiv
     Ratio >= 1,1
     Serologisch Hinweis auf eine Infektion mit Varizella Zoster
     Virus (Varizella Zoster Virus Infektion? Herpes Zoster?).
     Wir empfehlen eine Verlaufskontrolle der VZV-Antikörper
     sowie die Bestimmung der aktuellen zellulären Aktivität
    mittels VZV-EliSpot in ca. 2-3 Wochen.
```

EBV immunoarray showing positive early antigen (EA) p54 IgG and IgM as well as +ve VCA IgG

Epstein-Barr-Virus Immuno-A	array		
EBV VCA p18 lgG	+	positive	negative
EBV VCA p23 lgG	+	positive	negative
EBV EA p54 lgG		negative	negative
EBV EA p138	+	positive	negative
EBV EBNA-1 lgG	+	positive	negative
EBV VCA p18 IgM		negative	negative
EBV VCA p23 IgM		negative	negative
EBV EA p54 lgM	+	positive	negative
EBV EA p138 IgM		negative	negative

The specific EBV-IgG/IgM-, EBV-Early Antigen-antibodies and EBV-EBNA-antibodies indicate humoral immune response against Epstein Barr Virus (former or reactivated or EBV-infection in convalescence?).

The Elispot technique reflects the current T-cellular activity of bacteria and viruses

Chapter 1

Unique Strengths of ELISPOT for T Cell Diagnostics

Paul V. Lehmann and Wenji Zhang

Abstract

The T cell system plays an essential role in infections, allergic reactions, tumor and transplant rejection, as well as autoimmune diseases. It does so by the selective engagement of different antigen-specific effector cell lineages that differentially secrete cytokines and other effector molecules. These T cell subsets may or may not have cytolytic activity, can preferentially migrate to different tissues, and display variable capabilities to expand clonally. The quest of T cell immune diagnostics is to understand which specific effector function and T cell lineage is associated with a given clinical outcome, be it positive or adverse. No single assay can measure all of the relevant parameters. In this chapter, we review the unique contributions that ELISPOT assays can make toward understanding T cell-mediated immunity. ELISPOT assays have an unsurpassed sensitivity in detecting low frequency antigen-specific T cells that secrete effector molecules, including granzyme and perforin. They provide robust, highly reproducible data—

even by first time users. Because cytometry, ELISPOT is ideally su ditions. These include defining (a establishing the fine–specificity of concentrations of the antigen in se secretory products released by T because T cells survive ELISPOT

Handbook of ELISPOT

Methods and Protocols

Third Edition

Humana Press

Springer Protocols

"The quantification of single cell interferon-gamma (IFN-γ) release for assessing cellular immune responses using the Enzyme-linked immunospot (ELISPOT) assay is an invaluable technique in immunology."

Source: 1 <u>Sedegah M</u>. The Ex Vivo IFN-y Enzyme-Linked Immunospot (ELISpot) Assay <u>Methods Mol Biol.</u> 2015;1325:197-205; <u>Humana Press; 3rd ed. 2018</u> edition (14 July 2018)

Enzyme-linked immunosorbent spots (Elispots) are available for most viruses: T-cells/cellular response

657 SI

65 SI

EBV EliSpot (lytic+latent)

2-3 is weak positive

Over 3 is positive

Positive above 1:

1 EBV EliSpot (lytic)

0-1 = negative

2-3 = weak positive

> 3 = positive

Very high lytic levels seen post COVID

1 EBV EliSpot (latent)

0-1 = negative

2-3 = weak positive

> 3 = positive

The result of the EliSpot test indicates current celluar activity against Epstein-Barr-Virus (EBV).

Explanation of EBV antigens:

EBV-lytic antigen: sign for replication of infectious EBV virions

EBV-latent antigen: sign for EBV latency with no production of infectious EBV virions

Analysis		Result Units	Reference Range
EBV EliSpot (lytic+latent)			
<pre>1 EBV EliSpot (lytic) 0-1 = negative 2-3 = weak positive > 3 = positive</pre>	!	16 SI	
<pre>1 EBV EliSpot (latent) 0-1 = negative 2-3 = weak positive > 3 = positive</pre>	I	8 SI	
The result of the EliSpo activity against Epstein			uar
Explanation of EBV antigEBV-lytic antigen: sign virions EBV-latent antigen: sign of infectious EBV virion	for replic		
Cytomegalo Virus EliSpot			
CMV-EliSpot	+ 2	89 SI	
			>3 = positive
			2-3 = weak positive
			<2 = negative
The result of the EliSpot-Test is a	an indication fo	or a current cellular activity	against Cytomegalo-Virus.

This document is intellectual property of Armin Schwarzbach MD PhD. Reproduction only with permission. Please note the copyright.

EBV / CMV and SLE (Lupus): Clinical example

	untersuchung	Ergebnis	Einheit	Normbereich	Grafik
	Autoantikörper				
4	Antinukl. Antikörper/ANA (IFT~+ ANA-Fluoreszenzmuster~ Nachweis von antinukleären Aut ANA-Nachweis kann als e i n Di Systemischen Lupus Erythematod Befund kann auch bei anderen A Kollagenosen, chronische aktiv Arthritis u.ä.) beobachtet wer Die Untersuchung auf Autoantik bei klinischem Kollagenoseverd homogenem Muster und V.a. Rheu Bestimmung des Rheumafaktors u sinnvoll.	comogen coantikörpe: agnosekrite des herange: autoimmunerl e Hepatitis den. corper geger lacht angeze	erium für e zogen werde krankungen s, Rheumato n dsDNS und eigt! Bei A	inen n. Dieser (weitere ide ENA ist NA mit	[*>
	EBV EliSpot (lytisch+latent)				
1	EBV-lytischer Peptidmix ! 0-1 = negativ 2-3 = grenzwertig ab 4 = positiv	2 9	31		
0.00	FOR THE PROPERTY AND THE PROPERTY OF THE PROPE		2022		
1	EBV-latenter Peptidmix ! 0-1 = negativ 2-3 = grenzwertig ab 4 = positiv	9 8	SI		
	Mittels EliSpot finden sich ak T-Zell-Reaktionen gegen Epstei				
	Erläuterung EBV-Antigene: EBV lytisches Antigen: Hinweis EBV latentes Antigen: Hinweis				
	Achtung: Ab 01.08.2016 geänder	te Nachwei:	sgrenze!		
	CMV EliSpot				
1	CMV Peptidmix I 0-1 = negativ 2-3 = grenzwertig ab 4 = positiv	21 :	SI		

T-Cell testing – EliSpot – is available for:

Borrelia burgdorferi (3 subspecies: B.b. sensu stricto + B.b. garinii + B.b. afzelii)
 Borrelia myamotoi
 Bartonella
 Babesia
 Chlamydia pneumoniae and trachomatis
 Mycoplasma pneumoniae
 Ehrlichia/Anaplasma
 Yersinia enterocolitica
 Epstein Barr Virus (EBV): lytic and latent

Varicella Zoster Virus (VZV)

Herpes Simplex Virus 1 / 2

HHV-6, HHV-7, HHV-8

Cytomegalovirus (CMV): lytic and latent

Agenda

- ☐ Herpes viruses, enteroviruses, and other species
- Associations of viruses with different health conditions:
 - Syndromes (ME/Fibromyalgia, etc.)
 - Autoimmune pathologies
 - Neurological conditions
 - Cancers
- SARS-CoV-2/COVID-19 and viral reactivation
- Testing techniques
- Checklists and other resources
- Therapies

Checklists help decide which infections to test for; history and physical signs/symptoms also vital (1/2)

Coinfections-Checklist

Name	e, first name	. Dat	e (DD/MM/YYYY)	
	Actual and former symptoms Please mark with a cross	X	Score-Points (filled in by physician/naturopath)	Ranking
1	Stomach ache, gut problems	\times	Ehrlichia&Anaplasma.5	4
2	Anaemia		Babesia: 4	5
3	Diarhoea intermittent		Rickettsia: 4	5
4	Fever or feverish feeling	\times	Bartonella:7	2
5	Lack of concentration, memory disturbance, forgetfulness	\times	Chl.pneumoniae:6	3
6	Encephalitis/Inflammation of the brain (NMR)		Chl.trachomatis:2	7
7	Yellowish colour of the skin/eyes		Yersinia:3	6
8	Painful joints, swollen joints		Mycoplasma:5	4
9	General aches and pains, tendon problems		Coxsackie-/Echo-Virus: 8	1
10	Flu-like symptoms intermittent	\times	EBV/CMV/HSV/VZV: 8	1
11	Rash(es)	\times		
12	Small red/purple spots of the skin			
13	Heart problems, disturbance of cardiac rhythm	$\overline{\times}$		
14	Cough, expectoration			
15	Headache	$\overline{\mathbb{X}}$		
16	Impaired liver function/ liver laboratory values	\overline{X}		
17	Pneumonia, bronchitis			
18	Swollen lymph nodes	$\overline{\times}$		7
19	Tonsilitis	$\overline{\mathbb{X}}$		
20	Enlargement of the spleen			

ArminLabs GmbH

Post-Covid checklist also available (2/2)

Post Covid Coinfection checklist

Name, first name Date (DD/MM/YYYY)

	Your current and former symptoms Please click on the boxes next to the symptoms that you suffer from	Х
1	Stomach ache, gut problems	
2	Anaemia	
3	Diarhoea intermittent, intestinal crampings/pain	
4	Fever or feverish feeling	
5	Lack of concentration, memory loss, forgetfulness	
6	Encephalitis/Inflammation of the brain	
7	Yellowish colour of the skin/eyes	
8	Painful joints or swollen joints	
9	General aches and pains, tendon problems	
10	Flu-like symptoms	
11	Rash(es), striae, exanthema	
12	Small red/purple spots of the skin	
13	Heart problems, feeling disturbance cardiac rhythm	
14	Cough, expectoration, "air-hunger"	
15	Headache, dizziness	
16	Impaired liver function/ liver laboratory values	
17	Pneumonia, bronchitis	
18	Swollen lymph nodes	
19	Enlargement of the spleen	
20	Fatigue / exhaustion, intermittent or chronic CFS	
21	Muscle pain, muscle weakness	
22	Shivering, chill	
23	Blurred, foggy, cloudy, flickering, double vision	
24	Nausea, vomiting	
25	Dark urine	
26	Itching or pain when urinating	
27	Tingling, numbness, "burning" sensations	
28	Neck pain, neck stiffness	
29	Shoulder pain	

_	MOSING TICK-BORNE DISEASES		86154 GERM	Augsburg				
30	Back pain, pelvic pain	Back pain, pelvic pain						
31	Sleeplessness							
32	Night sweat, sometimes between 2 and 4 a.m.							
33	Sore throat, throat pain							
34	Tinnitus, hearing loss							
35	Dry skin							
36	Conjunctivitis, inflammation of the eyes							
37	Panik attacks, depression, psychosis, mood swin	ıgs						
38								
39	Sinusitis							
ranki	w you'll find the number of the symptoms for ing, in which order you should test for them ing of the infections	No. of symptoms	ns that we test ro	r and the				
_	amydia pneumoniae	110. or symptoms	T.GTIK					
Chla	amydia trachomatis							
Мус	coplasma pneumoniae							
Yers	sinia							
Can	npylobacter							
Н. р	ylori							
HSV	/ 1/2							
EBV								
CM	•							
VZV								
HHV								
	vovirus							
Cov	Covenskie Visus							

Echovirus Candida Aspergillus Parasites

Coinfections-Checklist

Name	, first name	Dat	e (DD/MM/YYYY)		
	Actual and former symptoms Please mark with a cross	X	Score-Poin (filled in by physician/nature	1	Ranking
1	Stomach ache, gut problems	\times	Ehrlichia:	7	3
2	Anaemia		Babesia:	4	6
3	Diarhoea intermittent		Rickettsia:		4
4	Fever or feverish feeling	\times	Bartonella:		2
5	Lack of concentration, memory disturbance, forgetfulness	\boxtimes	Chl.pneumoniae:	9	1
6	Encephalitis/Inflammation of the brain (NMR)		Chl.trachomatis:	5	5
7	Yellowish colour of the skin/eyes		Yersinia:	5	5
8	Painful joints, swollen joints	\times	Mycoplasma:	7.	3
9	General aches and pains, tendon problems	\times	Coxsackie-Virus: .		1
10	Flu-like symptoms intermittent	\times	EBV/CMV/HSV:	7	3
11	Rash(es)	X	,		
12	Small red/purple spots of the skin				
13	Heart problems, disturbance of cardiac rhythm	\times			
14	Cough, expectoration				
15	Headache	\boxtimes			
16	Impaired liver function/ liver laboratory values				
17	Pneumonia, bronchitis				
18	Swollen lymph nodes	\times			
19	Tonsilitis				
20	Enlargement of the spleen				
21	Fatigue / exhaustion, intermittent or chronic CFS	$\overline{\times}$			
22	Muscle pain, muscle weakness	\boxtimes			
23	Shivering, chill				
24	Blurred, foggy, cloudy, flickering, double vision	\times			
25	Nausea, vomiting	X			
26	Dark urine				
27	Itching or pain when urinating				

Ranked in order of priority – draw for first place here: Chlamydia pneumoniae (CPN) and Coxsackie

Tailored testing protocols (examples)

» Cardiac Dysrrhythmias:

- 1. CMV ELISpot + IgG/IgM antibodies
- 2. EBV ELISpot + IgG/IgM antibodies
- 3. HSV 1/2 IgG/IgA/IgM antibodies
- 4. Coxsackie Virus IgG/IgA antibodies
- 5. Echovirus IgG/IgA antibodies
- 6. Rickettsia ELISpot
- 7. Borrelia ELISpot

» Uveitis:

- 1. Borrelia ELISpot
- 2. Tickplex basic
- 3. CD3/CD56/CD57 cells
- 4. Borrelia ELISpot
- VZV ELISpot + IgG/IgA/ IgM antibodies
- HSV1/2 ELISpot + IgG/ IgA/IgM antibodies
- 7. CMV ELISpot
- 8. Bartonella ELISpot
- Chlamydia trachomatis ELISpot + IgG/IgA antibodies

» Skin rashes eg maculopapular exanthemata:

- 1. HHV-7ELISpot
- 2. Coxsackie Virus IgG/IgA antibodies
- Echovirus IgG/IgA antibodies

» Rheumatoid Arthritis

- 1. Borrelia ELISpot
- 2. CD3/CD56/CD57 cells
- 3. Coxsackie Virus IgG/IgA antibodies
- 4. Echovirus IgG/IgA antibodies
- Yersinia ELISpot
- 6. Campylobacter IgG/IgA antibodies
- 7. EBV ELISpot
- 8. CMV ELISpot
- Mycoplasma pneumoniae IgG/ IgA antibodies
- Chlamydia pneumoniae IgG/ IgA antibodies

Agenda

- ☐ Herpes viruses, enteroviruses, and other species
- Associations of viruses with different health conditions:
 - Syndromes (ME/Fibromyalgia, etc.)
 - Autoimmune pathologies
 - Neurological conditions
 - Cancers
- SARS-CoV-2/COVID-19 and viral reactivation
- Testing techniques
- Checklists and other resources
- Therapies

Herbs and nutraceuticals for viral infections (1/2)

Herpes, especially Epstein Barr, Cytomegalovirus, Varicella Zoster virus

Liquorice: Its component glycyrrhizin is particularly responsible for its antiviral activity; "novel way to interrupt latency" of EBV¹

Andrographis paniculata: Andrographolide, the active extract from plants of the Andrographis genus, has broad-spectrum antiviral properties: "miraculous compound to restrain virus replication and virus-induced pathogenesis ... shown to inhibit transcription of EBV IE genes and the production of EBV virions"²

Scullcap/Baicalein: Noted antiviral properties, also against Coxsackie³

Dandelion: Blocks the interaction between ACE2 cell surface receptor and SARS-CoV-2 spike protein⁴

Artemisia annua: "Artemisia annua L. extracts inhibit the *in vitro* replication of SARS-CoV-2 and two of its variants." "... the bioactivity of artemisinin and its semisynthetic derivative artesunate is even broader and includes the inhibition of certain viruses, such as human cytomegalovirus and other members of the *Herpesviridae* family (e.g., herpes simplex virus type 1 and Epstein-Barr virus)" 6

Sources: 1. https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC1052015/; 2. Gupta S et al. Broad-spectrum antiviral properties of andrographolide. Arch Virol. 2017 Mar;162(3):611-623; 2. Andrei G et al. Novel Therapeutics for Epstein Barr Virus. Molecules. 2019 Mar 12;24(5):997; Lin, TP et al. Inhibition of the Epstein—Barr virus lytic cycle by andrographolide. Biol. Pharm. Bull. 2008, 31, 2018–2023; 3. Fu Q, Gao L, Fu X, Meng Q, Lu Z. Scutellaria baicalensis Inhibits Coxsackievirus B3-Induced Myocarditis Via AKT and p38 Pathways. J Microbiol Biotechnol. 2019 Aug 28; 4. https://www.biorxiv.org/content/10.1101/2021.03.19.435959v1.article-info; 5. https://www.sciencedirect.com/science/article/pii/S0378874121002439; 6. https://academic.oup.com/cid/article/47/6/804/325924. All images from Wikipedia, free to use on Commons License.

Herbs and nutraceuticals for viral infections (2/2)

Nigella sativa (Black Seed oil): Black Seed oil from Nigella sativa seeds has been found to act against seasonal allergic rhinitis, avian influenza and cytomegalovirus.^{1, 2}. It has virucidal activity against herpes simplex³

Quercetin and zinc: Quercetin acts as an ionophore and carries the zinc deep into the cell⁴

Curcumin: Antiviral and immunomodulatory^{5,} "improves mitochondrial dynamics

regarding mitochondrial biogenesis and mitophagy"6

Cistus incanus tea – demonstrated antiviral action on several viruses, including SARS-CoV-2⁷

The amino acid L-Lysine appears to apply universally across the entire family of herpes viruses⁸

Support for immunity/natural killer cell activity:

Glutathione – liposomal; N-Acetyl Cysteine: precursor to GSH, mucolytic and perturbs SARS-CoV-2 spike protein conformation⁹; releases histamine however¹⁰, beware with MCAS Enzymatically modified rice bran

Sources: 1. https://pubmed.ncbi.nlm.nih.gov/23855426/; 2. https://pharmacologyonline.silae.it/files/newsletter/2019/vol2/PhOL 2019_
2 NL007 Molla.pdf; 3. https://www.sciencedirect.com/science/article/abs/pii/S0192056100000369?via%3Dihub; 4. https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1001176; 5. https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7899028/; 6. de Oliveira MR et al. Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnol Adv. 2016;34(5):813-826; Ungvari, Z et al. (2011). 7. https://www.sciencepublishinggroup.com/journal/paperinfo?journalid=320&doi=10.11648/j.jdmp.20210703.13; 8. https://www.researchgate.net/publication/344210822 Lysine Therapy for SARS-CoV-2; 9. https://chemrxiv.org/engage/apigateway/chemrxiv/assets/orp/resource/item/60c753ec4c89190f3bad43ca/original/n-acetyl-cysteine-a-tool-to-perturb-sars-co-v-2-spike-protein-conformation.pdf; 10. https://pubmed.ncbi.nlm.nih.gov/2409763/; All images from Wikipedia, free to use on Commons License

... as well as medicinal mushrooms to help the switch from Th2 to Th1

Iwatsuki et al. (2013) found reishi inhibits the activation of Epstein-Barr virus.¹

Agaricus blazeii: antiinfectious properties "mediated through the mushroom's stimulation of innate immune cells, such as monocytes, NK cells, and dendritic cells, and the amelioration of a skewed Th1/Th2 balance and inflammation."2

Table 2

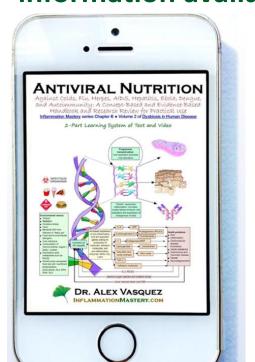
The list of introduced medicinal herbs and mushrooms. (+ stands for the level activity, representing mild, moderate, severe and very severe respectively).

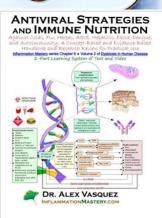
Medicinal Herbs and Mushrooms	Antiviral Activity	Anti-Inflammatory Activity	Anticancer Activity
Prunella vulgaris	++	+++	++
Garlic (Allium sativum)	++	+	++
Zingiber officinalis	++	+++	+
Lentinus edodes mycelia (shiitake)	+++	+++	-
Grifola frondosa	++	+	++
$Ganoderma\ lucidum\ $ aqueous extract (GLE)	+++	+++	-
Chlorella vulgaris ethanolic extract (CVE)	+++	+++	-
Inonotus obliquus	++	++++	++++

Open in a separate window

2. The Potential Use of Mushrooms and Herbs against SARS-CoV-2 Infection

Go to: >


Multiple flavonoids with antiviral activity ...


"... significant antiviral properties both in vitro and in vivo."

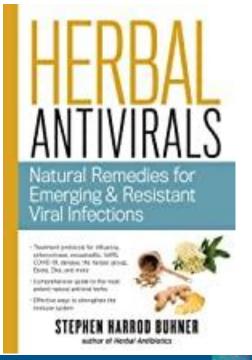

Source: Wang L, Song J, Liu A, Xiao B, Li S, Wen Z, Lu Y, Du G. Research Progress of the Antiviral Bioactivities of Natural Flavonoids. Nat Prod Bioprospect. 2020 Oct;10(5):271-283

Table 1 The differe	nt viruses which inhibited by various flavonoi	ds	
Viruses	Model	Flavonoids	References
Influenza virus	MDCK cells	Gallocatechin-7-gallate, catechins, apigenin, luteolin, 3-deoxysappanchalcone, scutellarin, galuteolin, vitexin, chrysin, kaempferol, quercetin, myricetin, rhamnocitrin, rutin, daidzein, genistein, sappanchalcone, baicalein, oroxylin A	Liu et al. [19], Yonekawa et al. [20]
HBV	Vero cells	Myricetin rhamnoside, myricetin-3- α -O-ramnosil $(1 \rightarrow 6)$ - α -galactoside, 5,3'-dihydroxy-3,6,7,8,4'- pentamethoxyflavone, 5-hydroxy-3,6,7,3',4'- pentamethoxyflavone	Ortega et al. [21]
HCV	Huh-7.5 cells	Epigallocatechin gallate (EGCG), sorbifolin, pedalitin	Mekky et al. [22]
HIV-1	CD4+ NKT cells, T cells	Hesperidin, linarin, catechins, genistein, herbacitrin, naringin, formononetin, biochanin A	Nzuza et al. [23]
HIV-2	Vero cells	Genistein, formononetin, biochanin A	Patra [24]
HSV-1	Vero and CV1 cells	Catechins, genistein,gorvanol A, kaempferol, 5,6,7-tri- methoxyflavone, 5,3'-dihydroxy-3,6,7,8,4'- pentameth- oxyflavone, 5-hydroxy-3,6,7,3',4'- pentamethoxyflavone, coumestrol, houttuynoid A, chrysin	Li et al. [25]
HSV-2	Vero cells	Genistein, cournestrol, houttuynoid A	Bús et al. [26]
HPV-1	Human condyloma, Vero cells	Catechins, 5,3'-dihydroxy-3,6,7,8,4'- pentamethoxyfla- vone, 5-hydroxy-3,6,7,3',4'- pentamethoxyflavone	Patra [24]
DENV-2	C6/36 Aedes albopictus mosquito cell, hepatocytes (Huh-7)	Quercetin, quercitrin, kaempferitrin, chrysin	Patra [24]
Sendai virus (SeV)	Mice model	Baicalein	Dou et al. [27]
Zika virus (ZIKV)	Vero cells	Baicalein, baicalin, pinocembrin, chrysin, myricetin, luteolin, Epigallocatechin gallate, epicatechin gallate, gallocatechin gallate, quercetin-3-β-O-p-glucoside	
CVB3	Vero cells	Mosloflavone, oroxylin A, norwogonin, epigallocatechin- 3-gallate	Patra [24]
JEV	A549 cells, BHK21 cells	Epigallocatechin-3-gallate (EGCG), luteolin, kaempferol	Patra [24]
EBV	Ramos cells	Genistein, quercetin, apigenin, luteolin, baicalein	Granato et al. [29]
Poliovirus	Vero cells	5,6,7-Trimethoxyflavone, 3-methylkaempferol, 3(2H)-isoflavene	Ortega et al. [21]
RSV	Vero cells	Genistein, quercetin, baicalein, baicalin, epigallocatechin- 3-gallate, proanthocyanidin	Zhang et al. [30]
Coronovirus	Vero cells	Quercetin, Luteolin, quercetin, quercetrin, kaempferol glycosides	Patra [24]
SARS-CoV	3CL protease activity assay	Daidzein, rutin, genistein, icaritin, genistin, ipriflavone, (—) gallocatechin, (±)-epigallocatechin gallate, puerarin, (—)-epicatechin, glabridin, (±)-catechin, baicalein, diosmin, diosmetin, skullcapflavone II, orientin, acacetin, bacicalin, rhoifolin, hispidulin, sinensetin, oroxin B, pectolinarin, cirsiliol, homoplantaginin, amentoflavone, luteolin, herbaacetin, kaempferol, morin, myricetin, fisetin, quercitrin, queretin, helichrysetin, cardamonin, neodesperidin dishydrochalcone, mangiferin, auraptene	Jo et al. [7]
Human CMV	HEL 299 cells	Genistein, 5,6,7-Trimethoxyflavone	Patra [24]
Rotavirus	MA-104 cells, Caco2 cells	Genistein, epigallocatechin Gallate (EGCG), α -glucosyl hesperitin (GH)	Lipson et al. [31]
Adenovirus	Hep2 cells, SW480 cell, BCC-1/KMC cells	Catechins, genistein, quercetin	Patra [24]
SARS-CoV-2	Vero cells	Baicalein, scutellarein, dihydromyricetin, quercetagetin, myricetin	Liu et al. [32]

Many sources of information available

Download COVID-19: Nutraceutical and Botanical Recommendations Patient Education tools

As part of the Functional Medicine approach to COVID-19, IFM has outlined the biological plausibility, mechanism of action, strength of evidence, and risk of harm for various nutraceutical and botanical agents that may have activity against SARS-CoV-2. This article is part two of a series. Click here to view part one.

Table of Contents		
Andrographis Paniculata	Melatonin	
Astragalus Membranaceus	Mushrooms	
Berberine	N-Acetylcysteine (NAC)	
Beta Glucans	Quercetin	
Curcurmin	Resveratrol	
Echinacea	Vitamin A	
Elderberry	Vitamin C	
Epigallocatechin Gallate (EGCG)	Vitamin D	

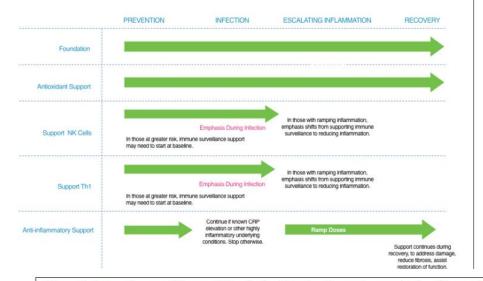
Green tea or

COVID-19: Nutraceutical and Botanical Recommendations for Patients

Research on specific botanical and nutraceutical agents indicates they may have a role in the pre-exposure and early phase of COVID-19 based on their ability to improve the immune response to, and recovery from viral linesses. Beneficial botanical and nutraceutical agents are listed below, along with dosing recommendations from your function medicine practitioner. For more information on personalized recommendations, please consult your practitioner directly.

NUTRACEUTICAL OR BOTANICAL AGENT	BENEFITS	ENHANCES IMMUNE SYSTEM	DECREASES VIRAL GROWTH	REDUCES SYMPTOMS
Curcumin 500-1,000 mg. 2x daily	Curcumin has been shown to reduce inflammation and decrease viral activity for COVID-19.	•	•	•
Quercetin Regular: 1.000 mg crally, 2x daily Phytosome: 500 mg, 2x daily	Quercetin is found in fruits and vegetables and has a wide range of benefits, including decreasing viral growth.	•	•	•
Zinc acetate, citrate, picolinate, or glycinate; zinc gluconate (as lozenge) 30-60 mg orally daily, in divded doses	A large body of research shows that zinc has strong anti-viral properties against many viruses.	•	•	•
N-Acetylcysteine (NAC) 600-900 mg. 2x daily	N-acetylcysteine promotes the production of glutathione, a potent antioxidant that supports immune function. It also reduces the severity of the flu.	•		•
Vitamin D 5,000 IU orally, daily	Vitamin D enhances immune system function, reduces viral growth, and can reduce upper respiratory infections.	•	•	•
Vitamin A 10,000-25,000 NJ, daily	Vitamin A is anti- inflammatory, enhances immune function, and supports the lining of the respiratory tract.	•		•
Vitamin C 1-3 g crally, daily	Vitamin C contributes to immune defense by supporting various cellular functions of the immune system. Vitamin C has been used in hospital ICUs to treat COVID-19 infection.	•	•	•

NUTRACEUTICAL OR BOTANICAL AGENT	BENEFITS	ENHANCES IMMUNE SYSTEM	DECREASES VIRAL GROWTH	REDUCES SYMPTOMS
Melatonin 5-20 mg, taken at beatime	In addition to promoting restful sleep, melatonin has been shown to reduce inflammation.	•	•	
Elderberry (Sambucus nigra) 500 mg orally, daily	Elderberry is packed with vitamin C, dietary fiber, and antioxidants. It has been used extensively in the prevention of influenza	•	•	


In addition to reducing inflammation, green tea

Sources: https://www.ifm.org/news-insights/functional-medicine-approach-covid-19-additional-research-nutraceuticals-botanicals/; https://p.widencdn.net/kvdwlh/COVID-19 Nutraceutical-and-Botanical-Recommendations-for-Patients v4;

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190003/pdf/imcj-19-08.pdf

© 2021 The Institute for Functional Medicine

Figure 1. Five Targets of Support as they apply to the four Phases in the time course of disease. It's essential that if the patient moves from the Infection Phase to the Escalating Inflammation Phase, the emphasis shifts to downregulation of the potentially life-threatening inflammatory process.

Structured strategies from Dr. Sam Yanuck and Dr. Fitzgerald

This article is protected by copyright. To share or copy this article, please visit copyright.com. Use ISSN#1945-7081. To subscribe, visit imjournal.com

REVIEW OF EMERGING RESEARCH

Evidence Supporting a Phased Immuno-physiological Approach to COVID-19 From Prevention Through Recovery

Yanuck SF1, Pizzorno J2, Messier H3, Fitzgerald KN4

¹ Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine; Yanuck Center for Life & Health; Cogence Immunology; Chapel Hill, NC, USA. Corresponding author: syanuck@yanuckcenter.com

²Editor-in-Chief, Integrative Medicine, A Clinicians Journal; Coauthor, Textbook of Natural Medicine; Chair, Board of Directors, Institute for Functional Medicine; Founding President, Bastyr University; Seattle, WA, USA.

³Medical Director, Altum Medical; Chief Medical Officer, Medical Intelligence Learning Labs; San Francisco, CA, USA.

⁴Clinic Director, Sandy Hook Functional Medicine; Sandy Hook, CT, USA.

Abstract

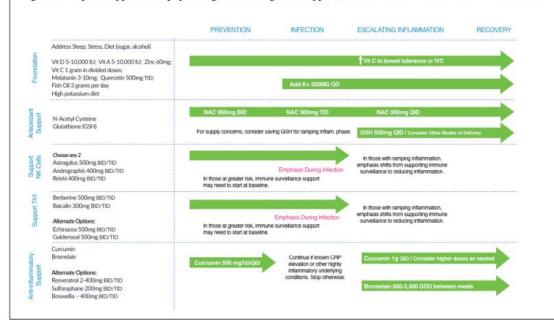
This paper presents an evidence-based strategy for improving clinical outcomes in COVID-19.

outcomes in COVID-19.

account of the disease, entions for one phase may not be ferent phase. The four phases on Infection. Inflammation and

nased approach is recognition of r two different components of infection and late stage severe wo aspects of the disease suggest of clinical emphasis that seem on ntirely concordant. We describe peutic strategies and appropriate four main stages of disease

e in COVID-19 suggests that the γ both evade the innate immune phages. Delayed innate immune 1 population of macrophages can a blunted antigen presentation, sing activation of the adaptive is, one clinical strategy involves te and adaptive immune responses rise of illness, with the goal of


improving the timeliness, readiness, and robustness of both the innate and adaptive immune responses.

At the other end of the disease pathology spectrum, risk of fatality in COVID-19 is driven by excessive and persistent upregulation of inflammatory mechanisms associated with cytokine storm. Thus, the second clinical strategy is to prevent or mitigate excessive inflammatory response to prevent the cytokine storm associated with high mortality risk.

Clinical support for immune system pathogen clearance mechanisms involves obligate activation of immune response components that are inherently inflammatory. This puts the goals of the first clinical strategy (immune activation) potentially at odds with the goals ofthe second strategy (mitigation of proinflammatory effects). This creates a need for discernment about the time course of the illness and with that, understanding of which components of an overall strategy to apply at each phase of the time course of the illness.

We review evidence from early observational studies and the existing literature on both outcomes and mechanisms of disease, to inform a phased approach to support the patient at risk for infection, with infection, with escalating inflammation during infection, and at risk of negative sequelae as they move into recovery.

Figure 2. Proposed approach to populating the five Targets of Support, across the four Phases of COVID-19 disease.

GP information leaflet available

Natural Antivirals GP INFORMATION LEAFLET

Many natural remedies have shown proven antiviral activity. A selection are included below. Please also refer to the leaflets on Vitamin C, D and zinc.

Iodine has long been known as a universal antiseptic.^{1, ii} Povidone-iodine "was effective against all the virus species tested," e.g. adeno-, mumps, rota-, polio- (types 1 and 3), coxsackie-, rhino-, herpes simplex, rubella, measles and influenza viruses.^{iii, iv, v} A 100 ppm molecular iodine rinse exhibited "complete inactivation of SARS-CoV-2 at both 30 secs. and also at 60 secs." Dosage: Depends on type used, and thyroid status. Please refer to a health professional. Topical use for bites, stings etc, applied ad lib.

Liquorice has been used for its antiviral properties since antiquity. Vii Its component glycyrrhizin is particularly responsible for its antiviral activity. Viii It has been found effective against Hepatitis Bix, Cx, herpes viruses, enteroviruses including Coxsackie (both A and B)xi, Xii, RSVxiii and SARS-associated Coronavirusxiv. Dosage: Depends on the form used, whether tincture or capsule. Please refer to intake instructions and a health professional

L-Lysine appears to apply universally across the entire family of herpes viruses. XV, XVI L-Lysine has proven an especially effective agent for reducing the occurrence, severity and healing time for recurrent HSV infection. XVIII A September 2020 preprint found that ~ 80% of acute-stage Covid-19 sufferers given lysine displayed at least a 70% reduction in symptoms in the first 48 hours XIX. Dosage up to 3g/day.

Garlic has evidenced antiviral activity on respiratory infections in multiple studies. XX, XXI It has shown anti-viral activity against the adenovirus family, the enteroviruses Coxsackie and Echovirus, as well as cytomegalovirus. XXII, XXIII, XXIII, XXIV, XXV, XXVI A March 2020 article revealed the potential of garlic oil against SARS-CoV-2. XXVII Dosage: 2 to 5 g of fresh raw garlic; 0.4 to 1.2 g of dried garlic powder; 2 to 5 mg garlic oil; 300 to 1,000 mg of garlic extract (as solid material); 2,400 mg of aged garlic extract (liquid)/day.

Glutathione (GSH) & N-Acetyl Cysteine (NAC): GSH can provide protection from viruses such as herpes and influenza A xxviii, xxix. Numerous other studies have demonstrated the antiviral properties of GSH and NAC, including some action against COVID-19 xxx.xxxii Dosage: prevention, up to 2,500mg/day. Treatment, up to 6000mg/day.

Resveratrol has been found to inhibit the replication of influenza virus xxxxiii. It has also shown efficacy both as an independent and adjunct therapy for Coronavirus as a viral replication blocker as well as prolonging cellular survival after virus infection xxxxiii x

Essential plant oils including oregano have shown encouraging antiviral properties, particularly against HSV-1^{xii}. Oregano oil's primary active component, carvacrol, has proven effective against the norovirus and upper respiratory conditions including coronavirus ^{xiii}, ^{xiiii}, ^{xiiv}. Dosage: up to 600mg/day, depending on strength and purity.

Black Seed oil from Nigella sativa seeds have been found to act against seasonal allergic rhinitis, avian influenza and cytomegalovirus. xiv, xivi, xivii It has virucidal activity against herpes simplex and hepatitis C virus infections. xiviii, xiix. Various compounds from Nigella sativa may potentially inhibit SARS-CoV-2 replication and attachment to host cell receptors. Dosage: 1-2 tspns/day.

Andrographis paniculate has been used for centuries in the treatment and prevention of upper respiratory tract infections, coughs, and sinusitis. ** It has been shown, in vitro, to be effective against avian influenza A (H9N2 and H5N1) and human influenza A H1N1 viruses. ** Andrographis is able to decrease the activity of furin protease, which can help prevent adhesion of SARS-CV-2 to mucosal epithelial cells. ** Dosage: Please refer to a health professional.

You must not rely on the information on our website as an alternative to medical advice from your doctor or other professional healthcare provider and if you have any specific questions about any medical matter, you should consult your doctor or other professional healthcare provider. Dosage guidance is general and more specific treatment amounts should again be obtained from a qualified health professional.

Tailored testing protocols (examples)

Microbe-Disease correlations according to Armin Laboratories

» Cardiac Dysrrhythmias:

- CMV ELISpot + IgG/IgM antibodies
- 2. EBV ELISpot + IgG/IgM antibodies
- 3. HSV 1/2 IgG/IgA/IgM antibodies
- 4. Coxsackie Virus IgG/IgA antibodies
- 5. Echovirus IgG/IgA antibodies
- 6. Rickettsia ELISpot
- 7. Borrelia ELISpot

» Uveitis:

- 1. Borrelia ELISpot
- Tickplex basic
- 3. CD3/CD56/CD57 cells
- 4. Borrelia ELISpot
- VZV ELISpot + IgG/IgA/ IgM antibodies
- HSV1/2 ELISpot + IgG/ IgA/IgM antibodies
- 7. CMV ELISpot
- 8. Bartonella ELISpot
- Chlamydia trachomatis ELISpot + IgG/IgA antibodies

» Skin rashes eg maculopapular exanthemata:

- 1. HHV-7ELISpot
- 2. Coxsackie Virus IgG/IgA antibodies
- Echovirus IgG/IgA antibodies

» Rheumatoid Arthritis

- Borrelia ELISpot
- 2. CD3/CD56/CD57 cells
- 3. Coxsackie Virus IgG/IgA antibodies
- 4. Echovirus IgG/IgA antibodies
- 5. Yersinia ELISpot
- Campylobacter IgG/IgA antibodies
- 7. EBV ELISpot
- 8. CMV ELISpot
- Mycoplasma pneumoniae IgG/ IgA antibodies
- Chlamydia pneumoniae IgG/ IgA antibodies

Phytobox range specifically for viral and bacterial pathogens

PhytoBox NO. 01

Support for Borrelia and intracellular infective pathogen

INGREDIENTS (4 CAPSULES):	DAILY DUSAGE	%KŲ-
Monolaurine	900 mg	
Baikal skullcap extract		

PHYTOBOX NO. 02

Support for neuroborreliosis and neuropathic dysfunctions

INGREE	DIENTS (2 CAPSULES):	DAILY DOS	AGE	%RQ*
Androg	raphis paniculata extract 4:1	400	mg	
Uncaria	rhyunchophylla	320	mg	
There	of Ginsenosides	256	mg	
Polygor	num cuspidatum	168,4	mg	
There	of trans-Resveratrol	159,8	mg	
Grapefr	uit seed extract	60	mg	
There	of Bioflavonoids	27	mg	

PHYTOBOX NO. 03

Break down of pleomorphic forms and support of detoxification & purification

INGREDIENTS (4 CAPSULES):	DAILY DOSA	AGE %RQ*
Chlorella pyrenoides	800	mg
Stinging Nettle extract 10:1	160	mg
Bilberry extract	160	mg
Thereof Anthocyanidins	40	mg
Cranberry extract	160	mg
Thereof Polyphenols	40	mg
Lingonberry fruit powder	160	mg
Artichoke extract 12:1	160	mg
Thereof Cynarin		
Sage leaf extract 4:1	100	mg
Wild garlic herb extract 4:1	50	mg
Cistus incanus	50	mg

*RQ = Reference quantity for daily

PHYTOBOX NO. 04

Anti-inflammatory and pain relieving

INGREDIENTS (4 CAPSULES):	DAILY DOSAGE	%RQ
OPC Grape seed extract	200 mg	
Thereof Polyphenols	190 mg	
Thereof OPC	100 mg	
Curcuma Extract	200 mg	
Thereof Curcuminoids	180 mg	
Thereof Curcumin	140 mg	
Rutin Powder	189,4 mg	
Thereof Rutin	179,8 mg	
Polygonum cuspidatu	147,4 mg	
Thereof trans-Resveratrol	140 mg	

PHYTOBOX NO. 05

Synbiotic with prebiotic

INGREDIENTS (4 CAPSULES):	DAILY DOSAGE	%RQ*
Acacia fibrethere of dietary fibre		
Bacterial cultures	ca. 1,2* 10^10 KBE**	
Biotin	50 µg	100
Niacin	16 mg	100
Riboflavin	1,4 mg	100
**KBE = colony forming units		

PHYTOBOX NO. 06

Support in chronic opportunistic virus infection, especially herpes verdiae

INGREDIENTS (3 CAPSULES):	DAILY DOSAGE	%RQ*
Zinc	10 mg	10 0%
Triphala extract		
thereof tannins	240 mg	
Propolis extract	120 mg	
thereof flavonoids	17 mg	
Lemon balm extract	100 mg	
thereof rosmarinic acid	3 mg	
Pomegranate extract	100 mg	
thereof ellagic acid	40 mg	
Thyme extract		
thereof essential oil		
Ginger extract		

PHYTOBOX NO. 07

Support in cytokine storms

INGREDIENTS (4 CAPSULES):	DAILY DOSAGE	%RQ*
Licorice root extract	880mg	
thereof glycyrrhizin	26mg	
Shiltake extract	650mg	
Black cumin extract	60 0mg	
Actavanthin	4mg	_

PHYTOBOX NO. 08

Support in bartonella infection

INGREDIENTS (2 CAPSULES):	DAILY DOSAGE	%RQ*
Herba houttuyniae extract 4:1	300 mg	
Oregano extract	90 mg	
thereof rosamaric acid	1,8 mg	
Fenugreek seed 8:1 extract	75 mg	
thereof saponins	15 mg	
Cinnamon extract 10:1	50 mg	
Liquorice root	27 mg	
Willow bark dry extract	25 mg	
thereof Salicin	3,75 mg	
Cistus incanus extract	25 mg	
thereof polyphenols	16,25 mg	
Grapefruit seed extract	25 mg	
thereof flavonoids		
Cloves 4:1 extract		
thereof flavonoids		
Uncaria rhynchophylla 10:1 extract	4,75 mg	
thereof indole alkaloids	0,9 mg	
Garlic 15:1 Extract	3,5 mg	
thereof allin	0,9 mg	

PHYTOBOX NO. 09

Support in Chlamydia Pneumoniae infection

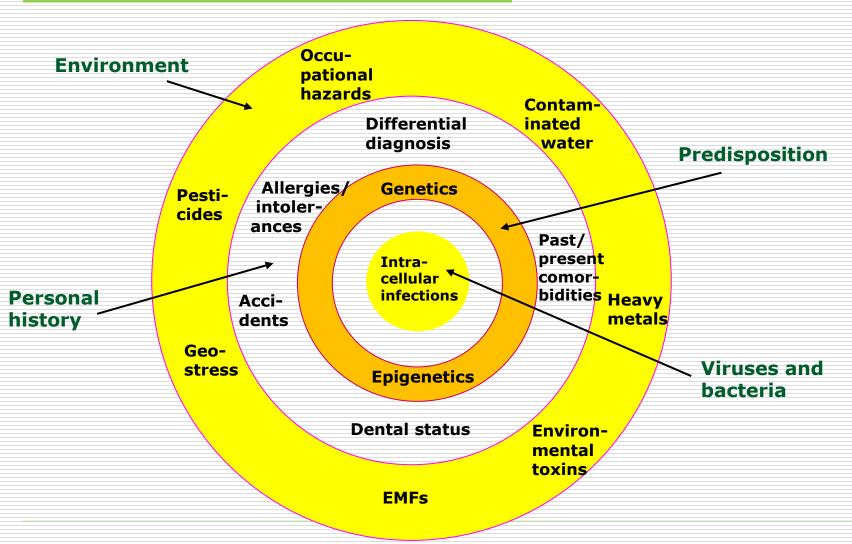
INGREDIENTS (3 CAPSULES):	DAILY DOSAGE	%RQ*
Vitamin C	200 mg	250
Nasturtium extract	500 mg	
Horseradish root extract	500 mg	
Chinese Lime Tree Extract	300 mg	
White mustard extract	120 mg	
of which Sinalbin	7,2 mg	
Barberry extract	85 mg	-

PHYTOBOX NO. 10

NK Cell support

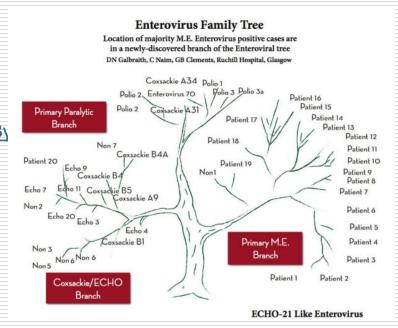
%R	DOSAGE	DAILY	INGREDIENTS (4 CAPSULES):
	40 mg		Vitamin C
	600 mg		Reishi Extract
	600 mg		Shiitake extract
	350 mg		Spirulina Powder
	300 mg		Cordyceps Extract
	300 mg		Maitake extract
	35 mg		Ginseng root extract
	2.8 mg		thereof ginsenosides

PHYTOBOX NO. 11


Support in Coxsackie and Echoviruses infection

INGREDIENTS (3 CAPSULES):	DAILY DOSAGE	%RQ*
Elderflower extract	500 mg	
thereof Rutin	25 mg	
Rhodiola rosea extract		
thereof Salidroside	7,5 mg	
Astragalus membranaceus root extractt	250 mg	
Oregano extract	180 mg	
thereof Rosmarinic acid	3,6 mg	
Barberry extract		
Mint, Tibetan		
Ginkgo biloba	80 mg	
thereof Flavone glycoside	19 mg	
thereof ginkgolides	4,8 mg	
St. John's wort extract	50 mg	
thereof Hypericin	0,15 mg	

"Peeling the onion"


Enteroviruses

The Doctors and Mr. Hyde: Amy Brown's M.E Enterovirus Story

https://www.healthrising.org/blog/2017/05/23/doctors-hyde-amy-browns-m-e-enterovirus-story/

Dr. Byron Hyde has found that enteroviruses underlie most cases of M.E. that he has investigated: https://aonm.org/wp-content/uploads/2019/05/
https://aonm.org/wp-content/uploads/2019/05/
https://aonm.org/wp-content/uploads/2019/05/

https://aonm.org/wp-content/uploads/2019/05/Dr.-Byhttps://www.youtube.com/watch?v=cx5w227VHWI

Articles on Enteroviruses

For further information on Coxsackie A & B,see: "Coxsackie – Doing damage to our very core: the energy delivery mechanisms of our heart?" (Article 3) https://aonm.org/wp-content/uploads/2018/10/AONM-Newsletter-October-2018-lr.pdf

For info on Enteroviruses, see "How pernicious are Enteroviruses?: Echovirus" (Article 2)

https://aonm.org/wp-content/uploads/2019/02/

AONM-Newsletter-February-2019.pdf

MINI REVIEW published: 12 March 2018 doi: 10.3389/fnmol.2018.00063

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857577/

Enteroviral Infection: The Forgotten Link to Amyotrophic Lateral Sclerosis?

Yuan Chao Xue 1,2, Ralph Feuer3, Neil Cashman4 and Honglin Luo 1,2 *

*Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, BC, Canada, *Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, *The Integrated Regenerative Research Institute at San Diego State University, San Diego, CA, United States, *Djevad Mowafaghlan Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada